首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
己内酰胺绿色生产技术   总被引:2,自引:0,他引:2  
孙斌  孟祥堃  宗保宁 《化学通报》2011,(11):999-1003
绿色化学的理想是实现反应的"原子经济"性,生产环境友好的绿色产品,这就要求原料中的每一个原子进入产品,不产生废物和副产品,并采用无毒无害的原料、催化剂和溶剂。根据绿色化学的理念,中国石化石油化工科学研究院历经20年,开发成功己内酰胺绿色生产技术,建成20万t/a工业生产装置。这项技术包括:单釜连续淤浆床与钛硅分子筛集成...  相似文献   

2.
纳米分子筛在炼油和石油化工中的应用   总被引:1,自引:0,他引:1  
介绍了纳米ZSM-5分子筛的合成及其在直馏汽油非临氢改质中的应用、纳米β分子筛的合成及其在苯与乙烯液相烷基化中的应用、纳米空心钛硅分子筛(HTS)的合成及其在环己酮氨肟化过程中的应用以及纳米Silicalite-1分子筛的合成及其在环己酮肟气相贝克曼重排生产己内酰胺中的应用,并简要综述了上述纳米分子筛合成和应用方面的最新研究进展. 结果表明,对于炼油和石油化工中易结焦失活的催化反应过程,分子筛的纳米化可抑制催化剂快速失活,延长催化剂寿命.  相似文献   

3.
将水热合成与溶剂蒸发法相结合, 以尖晶石结构的纳米铁酸镍为磁核, 成功制备了磁载钛硅分子筛. 采用傅里叶变换红外光谱仪(FTIR)、 振动样品磁强计(VSM)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和X射线衍射仪(XRD)等对样品进行了表征. 结果表明, 所制备的磁载钛硅分子筛颗粒呈球形, 分布均匀, 颗粒直径约为100~150 nm, 具有明显核/壳结构和超顺磁特征. 磁载钛硅分子筛在环己酮氨肟化反应中表现出良好的催化活性, 环己酮转化率达到98%, 产物选择性在97%以上.  相似文献   

4.
 研究了加料方式和底物浓度对钛硅分子筛Ti-MWW催化环己酮液相氨肟化反应的影响. 结果表明,加料方式对 Ti-MWW 催化环己酮氨肟化过程有重要影响,过氧化氢的浓度对反应过程也有一定的影响. 在过氧化氢缓慢加入反应体系的情况下,环己酮转化率和环己酮肟选择性都高于99%, 而且该反应过程以水作溶剂,对环境友好.  相似文献   

5.
 研究了氢氟酸后处理对 silicalite-1 催化环己酮肟气相Beckmann重排反应性能的影响. 结果表明,经适当浓度的氢氟酸溶液处理后,催化剂的选择性和稳定性都明显改善. 其中, silicalite-1 原粉先经硝酸铵预处理后再进行氢氟酸后处理所得到的催化剂催化性能最好,反应53 h后环己酮肟的转化率仍保持在96%左右,己内酰胺的选择性高达96.1%. XRD, FT-IR和 29Si MAS NMR的结果表明,较高的具有氢键相互作用的硅羟基与孤立硅羟基的比例值对环己酮肟气相Beckmann重排反应有利,同时, silicalite-1 表面硅原子的排布方式对该反应也有重要影响.  相似文献   

6.
钛硅分子筛材料是一种优异的选择性氧化反应催化剂,能在温和的条件下活化双氧水,并且只副产水,构建了一系列绿色高效的催化反应体系,已成功地应用于环己酮氨肟化、丙烯环氧化等工业过程.但是,工业上使用的钛硅分子筛通常需要经过成型,这避不可免地引入惰性的粘结剂甚至会造成堵孔,导致催化剂的活性降低.因此,直接合成具有微米尺度的钛硅分子筛材料有望解决上述问题.本文通过控制晶化条件直接水热合成了一种由初级粒子经晶间交叉生长堆积成的TS-2微球,详细考察反应条件,包括季铵盐模板剂的用量、H2O/Si比、醇的存在与否和晶化温度等的影响,发现反应体系保持高的碱度、静态晶化以及体系无醇是TS-2微球形成的关键因素.进一步地对TS-2晶化过程进行详细跟踪考察,发现常规TS-2纳米颗粒与TS-2微球在晶化初期均会形成无定形微球.随着晶化的进行,无定形相晶化成为TS-2纳米晶粒,是一级粒子,相互堆积形成次级粒子.较高的碱度使得TS-2微球的一级粒子以交叉生长的方式堆积,从而保证微球形貌在整个晶化过程中得以保持;而TS-2纳米颗粒中初级粒子以平行的方式堆积,无法保持初始的微球形貌,最终形成纳米尺度的聚集体.扫描电镜和透射电镜照片均证实了TS-2微球中初级粒子成交叉生长的方式堆积.TS-2微球催化剂经模板剂、氯化铵和哌啶组成的混合溶液水热处理,发生了溶解-再晶化过程,外比表面积从148增至176 m2 g-1,介孔孔容从0.16 cm3 g-1升至0.24 cm3 g-1;成功引入介孔的同时,仍能保持TS-2微球形貌以及Ti活性中心的四配位状态.经哌啶混合溶液处理后得到的MS-TS-2-PI在环己酮肟化反应中表现出优于MS-TS-2微球的催化性能,环己酮转化率从18.6%升至91.4%,环己酮肟选择性从86.6%升至97%.再经Na+离子交换可以消除骨架中的Si-OH,增强了骨架的疏水性,进一步地提高了其在环己酮肟化反应中的催化性能;环己酮转化率和环己酮肟选择性均>99%.在环己酮肟化连续反应中,TS-2微球表现出稳定的催化性能,使用寿命达到90 h,与工业TS-1催化剂相当,是一种具有工业前景的催化剂.  相似文献   

7.
介绍了磁稳定床反应器在国际上的首次工业应用,它集成了浆态床、固定床、移动床和流化床等反应器的优点. 通过调整线圈间距、在反应器内设置磁隔栅构件,实现了均匀磁场的放大; 绘制出磁稳定床反应器链式操作相图. 将非晶态Ni优异的加氢性能和磁性与磁稳定床反应器反应过程强化性能相结合,实现了在己内酰胺加氢精制过程的工业应用,并建成5套20~40万吨/年工业装置. 磁性催化剂与磁稳定床反应器相结合,强化了甲烷化、乙炔选择性加氢和烯烃叠合等反应过程,形成了新技术生长点.  相似文献   

8.
 采用不同极性的溶剂作为环己酮肟的溶剂,考察了溶剂极性对B2O3/TiO2-ZrO2催化环己酮肟气相Beckmann重排反应性能的影响. 结果表明,除乙醇外,随着溶剂极性的增大,己内酰胺的收率逐渐提高. 在所考察的溶剂范围内,当采用极性最强的乙腈为溶剂时,B2O3/TiO2-ZrO2的催化性能最佳,连续反应9 h,环己酮肟的转化率为100%,己内酰胺的选择性高达98.6%. 极性较强的溶剂可显著改善B2O3/TiO2-ZrO2催化性能的原因主要是其有利于反应所生成的己内酰胺从催化剂表面快速脱附,从而可抑制己内酰胺进一步发生聚合及分解等副反应.  相似文献   

9.
 研究了silicalite-1分子筛的不同后处理方法对其催化环己酮肟Beckmann重排制己内酰胺性能的影响,这些方法包括水(或氨)蒸气处理以及在碱性、酸性或中性条件下用NH4NO3处理. 结合XRD,FT-IR和 29Si MAS NMR表征结果对silicalite-1催化剂的活性中心进行了探讨. 结果表明,碱性条件下用NH4NO3进行后处理对提高分子筛的催化性能最为有利. 分子筛上无规则排布的末端硅羟基数量的减少,以及具有相互氢键作用的邻式硅羟基的产生是其催化性能提升的主要原因.  相似文献   

10.
以碳微球作为硬模板、纳米Silicalite-1分子筛作为壳层,采用水热法合成了Silicalite-1空心球材料。采用XRD、SEM、FT-IR、N_2吸附、29Si M AS NM R、TG、XPS等技术对催化剂的物相、形貌和性能等进行表征,发现该空心材料具有较高的结晶度、发达的多级孔道结构和丰富的表面羟基。与传统方法制备的Silicalite-1分子筛催化剂相比,Silicalite-1空心材料在环己酮肟Beckmann重排反应中表现出优异的催化性能,使环己酮肟的转化率达99%、己内酰胺的选择性达94%,同时催化剂保持极佳的稳定性。研究表明,Silicalite-1空心材料中具有的大量巢式硅羟基和末端硅羟基是Beckmann重排反应的主要活性位,且可通过简单焙烧再生实现羟基活性位的完全恢复。  相似文献   

11.
Synthesis of cyclohexanone oxime via the cyclohexanone-hydroxylamine process is widespread in the caprolactam industry, which is an upstream industry for nylon-6 production. However, there are two shortcomings in this process, harsh reaction conditions and the potential danger posed by explosive hydroxylamine. In this study, we presented a direct electrosynthesis of cyclohexanone oxime using nitrogen oxides and cyclohexanone, which eliminated the usage of hydroxylamine and demonstrated a green production of caprolactam. With the Fe electrocatalysts, a production rate of 55.9 g h−1 gcat−1 can be achieved in a flow cell with almost 100 % yield of cyclohexanone oxime. The high efficiency was attributed to their ability of accumulating adsorbed hydroxylamine and cyclohexanone. This study provides a theoretical basis for electrocatalyst design for C−N coupling reactions and illuminates the tantalizing possibility to upgrade the caprolactam industry towards safety and sustainability.  相似文献   

12.
Recently, Sumitomo Chemical Co., Ltd. developed the vapor-phase Beckmann rearrangement process for the production of -caprolactam. In the process, cyclohexanone oxime is rearranged into -caprolactam using a zeolite as a catalyst instead of sulfuric acid. EniChem in Italy developed the ammoximation process that involves the direct production of cyclohexanone oxime without producing any ammonium sulfate. Sumitomo Chemical Co., Ltd. has commercialized the combined process of vapor-phase Beckmann rearrangement and ammoximation in 2003.In this paper, the authors focus on some aspects of the vapor-phase Beckmann rearrangement catalysis. A solid catalyst that is mainly composed of a high-silica MFI zeolite (Silicalite-1) has been developed for the vapor-phase Beckmann rearrangement. This catalyst does not possess acidity that can be detected by ammonia TPD. Methanol fed into the reactor with cyclohexanone oxime improves the yield of caprolactam. Methanol reacts with terminal silanols on the zeolite surface and converts them to methoxyl groups. The modification of the catalyst by methanol has an important role for the Beckmann rearrangement reaction.Nest silanols located just inside the pore mouth of the MFI zeolite are supposed to be the active sites of the catalyst. We propose that the coordination between the NOH group of cyclohexanone oxime molecule and the nest silanols through hydrogen bonding is responsible for the reaction. The reaction mechanism of Beckmann rearrangement under vapor-phase conditions is the same as in the liquid phase, namely, the alkyl group in anti-position against the hydroxyl group of the oxime migrates to the nitrogen atom's position.  相似文献   

13.

The present article reviews the recent results reported mainly from our group on “green polymer chemistry”. Characteristic important aspects of green polymer chemistry include herein, typically (1) using renewable resources as starting materials for polymer production, and (2) employing green method for the polymer synthesis. As renewable starting materials, the following materials were employed; lactic acid, itaconic anhydride, renewable plant oils, and cardanol. Polymer production using these materials contributes to mitigate the carbon dioxide emission because of their “carbon neutral” nature. As green method, lipase enzyme was mainly used for polymerization catalyst, since lipase is a natural benign catalyst, showing a specific catalysis as well as recyclable character. Polymer synthesis from these materials and the catalyst provided various value-added functional polymers, demonstrating good examples of green polymer chemistry.

  相似文献   

14.
本文从低碳制氢和高效储氢的角度思考及探讨氢能体系绿色化发展过程中的关键科学问题.提出"绿色氢科学"理念与"低碳制氢,高效储氢"技术发展路线图,以期通过相关科学问题的认识,来构建具有高度原子经济性及可持续性的绿色氢能体系.  相似文献   

15.
In coordination chemistry, catalytically active metal complexes in a zero‐ or low‐valent state often adopt four‐coordinate square‐planar or tetrahedral geometry. By applying this principle, we have developed a stable Pt1 single‐atom catalyst with a high Pt loading (close to 1 wt %) on phosphomolybdic acid(PMA)‐modified active carbon. This was achieved by anchoring Pt on the four‐fold hollow sites on PMA. Each Pt atom is stabilized by four oxygen atoms in a distorted square‐planar geometry, with Pt slightly protruding from the oxygen planar surface. Pt is positively charged, absorbs hydrogen easily, and exhibits excellent performance in the hydrogenation of nitrobenzene and cyclohexanone. It is likely that the system described here can be extended to a number of stable SACs with superior catalytic activities.  相似文献   

16.
This minireview summarized the recent progress of converting the typical classes of large-scale aluminosilicates into zeolite materials for environmental remediation. The representative zeolite structures that can be directly converted from large-scale aluminosilicates via green chemistry approaches are addressed. The environmental remediation mechanisms on employing these zeolites for environmental remediation have been recapped. The present research gap and future research perspectives under carbon-neutral pressure via green chemistry principle on this topic are also discussed.  相似文献   

17.
针对当前钛硅型分子筛存在的微孔孔道孔径限制导致的流通扩散性能差及催化效率低等关键瓶颈问题, 通过在微孔分子筛中构筑跨尺度贯通高物质传输性能的等级孔道结构, 对钛硅分子筛(TS-1)晶体内等级孔道结构的可控构筑及其催化环氧化进行了研究, 成功制备出具有富含介孔孔道的等级孔介孔-微孔TS-1分子筛单晶材料(HTS-1), 其在氯丙烯催化环氧化反应中表现出了优异的催化活性及稳定性能.  相似文献   

18.
The molecular mechanism of the Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide catalyzed by the Sn-beta zeolite has been investigated by combining molecular mechanics, quantum-chemical calculations, spectroscopic, and kinetic techniques. A theoretical study of the location of Sn in zeolite beta was performed by using atomistic force-field techniques to simulate the local environment of the active site. An interatomic potential for Sn/Si zeolites, which allows the simulation of zeolites containing Sn in a tetrahedral environment, has been developed by fitting it to the experimental properties of quartz and SnO2(rutile). The tin active site has been modeled by means of a Sn(OSiH3)3OH cluster, which includes a defect in the framework that provides the flexibility necessary for the interaction between the adsorbates and the Lewis acid center. Two possible reaction pathways have been considered in the computational study, one of them involving the activation of the cyclohexanone carbonyl group by Sn (1) and the other one involving hydrogen peroxide being activated through the formation of a tin-hydroperoxo intermediate (2). Both the quantum-chemical results and the kinetic study indicate that the reaction follows mechanism 1, and that the catalyst active site consists of two centers: the Lewis acid Sn atom to which cyclohexanone has to coordinate, and the oxygen atom of the Sn-OH group that interacts with H2O2 forming a hydrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号