首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various membrane modules have been tested with regard to their use for cell enrichment with fermentation broth containing Saccharomyces cerevisiae. Both the cell concentration and the ethanol productivity were increased when using a continuously operated stirred tank bioreactor with different membrane modules. The biological state of the cells was investigated by laser flow cytometry and no influence of cell retention was found. Cell retention by membranes does not damage the cells.  相似文献   

2.
As an efficient means of strain improvement, adaptive evolution is a technique with great potential. Long-term cultivation of Saccharomyces cerevisiae was performed in a polydimethylsiloxane membrane bioreactor system which was constructed by coupling the fermentation with pervaporation. A parent strain was subjected to three rounds of fermentation–screening–transfer procedure lasting 1,500 h in a continuous and closed circulating fermentation (CCCF) system, and its 600-generation descendant S33 was screened. In shaking flask culture test, the selected strain S33 from the third round showed great superiority over the parent strain in the residual broth medium, with the ethanol yield and specific ethanol productivity increasing by 34.5 and 34.7 %, respectively. In the long-term CCCF test, the fermentation performance of the descendant strain in the third round was higher than that of its parent strain in the second round. These results show the potential of this novel adaptive evolution approach in optimization of yeast strains.  相似文献   

3.
The continuous wine fermentation process, which employs a newly designed tapered column type bioreactor and immobilized yeast cells (Montrachet 522), was studied and its fermentation performance was compared with batch and suspended cell continuous wine fermentation systems. It was found that a stable continuous culture fermentation process could be maintained for a period of 2–3 mo when the new bioreactor system packed with immobilized yeast cells was employed. The new bioreactor containing immobilized yeast cells performed significantly better than the suspended cell culture system or batch culture. The effluent wine from the continuous fermentor system contained 7.1% (v/v) ethanol and 0.18% (w/v) residual sugar at 0.01 h-1 dilution rate. The new continuous bioreactor system also gave 17–34 times higher maximum ethanol productivity compared to the conventional batch wine fermentation. At a low dilution rate, 0.01-1, as high as 92% sugar to ethanol yield was achieved. Based on the results obtained from this study, the possibility of developing a continuous wine cooler fermentation process was demonstrated. A two-stage continuous wine fermentation system may be designed and operated. The grape juice can be fed into the first-stage that is operated at about 0.2 h-1 dilution rate and the effluent from the first-stage is fed into the second-stage continuous fermentor operated at about 0.01 h-1 dilution rate. By doing so, a wine cooler can be produced continuously and efficiently, by employing the newly designed tapered column type bioreactor charged with the immobilized yeast cells.  相似文献   

4.
Ethanol production in a bioreactor with integrated membrane distillation (MD) module has been investigated. A hydrophobic capillary polypropylene membrane (Accurel PP V8/2 HF), with an external/internal diameter ratio, d out/d in = 8.6 mm/5.5 mm and pore size 0.2 μm, was used in these studies. The products (mainly ethanol and acetic acid) formed during the fermentation of sugar with Saccharomyces cerevisiae inhibited the process. These products were selectively removed from the fermentation broth by the MD process, which increased the efficiency of the conversion of sugar to alcohol from 0.45 g to 0.5 g EtOH per g of fermented sucrose. The bioreactor efficiency also increased by almost 30 %. Separation of alcohol by the MD generates a higher yield of ethanol in the permeate than in the broth. The enrichment coefficient amounted to 4-8, and depended on the ethanol concentration in the broth. The separated solutions did not wet the membrane in use for 2500 h of the MD experiments and the retention of inorganic solutes was close to 100 %.  相似文献   

5.
A process for the continuous production of high purityL-lactic acid in a membrane bioreactor at 65°C has been developed. Two differentBacillus stearothermophilus strains have been tested in batch experiments. Lactic acid yields are between 60 and more than 95% of theoretical yields. The amounts of ethanol, acetate, and formate formed varied between 0 and 0.4, 0 and 0.1, and 0 and 0.5, respectively (mol/mol glucose). All byproducts are valuable and may be separated easily by rectification of the fermentation broth. Complete cell retention enables high volumetric productivity (5 g/Lh), and a minimum of growth supplements. The high temperature of 65°C allows the autoselective fermentation without problems with contamination.  相似文献   

6.
The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280?g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65?h with an average ethanol concentration and ethanol yield of 130.12?g/L and 0.477?g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28?days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75?L. The bioreactor was operated for 26?days at a dilution rate of 0.015?h?1. The ethanol concentration of the effluent reached 130.77?g/L ethanol while an average 8.18?g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.  相似文献   

7.
As an energy-efficient alternative to distillation, pervaporation has been widely combined with fermentation to remove organic compounds from their dilute solutions in a fermentation broth. In this work, the organic permselective composite membrane is prepared by coating polydimethylsiloxane (PDMS) cross-linked with n-heptane on the substrate of polytetrafluoroethylene(PTFE) membrane. The separation behavior is studied in different dilute organic solutions, which include acetone dilute solution, butanone dilute solution, cyclohexanone dilute solution, ethanol dilute solution, isopropanol dilute solution, n-butyl alcohol dilute solution, acetic acid dilute solution, and ethyl acetate dilute solution. Most of these solutions are main reaction products or by-products from fermentation process. The effects of solubility of organics in the membrane, molecular weight, and polarity of the organics on the pervaporation performance are investigated. The effects of operating temperature and organic concentration in the feed solutions on the performance of composite membrane are studied as well. The experimental results show that molecular volume has less influence than solubility and molecular polarity for these organic solvent. The selectivity of PDMS membrane to ethyl acetate is relative high due to good solubility and diffusion of ethyl acetate molecules in polymer.  相似文献   

8.
Pervaporation by a continuous membrane column   总被引:3,自引:0,他引:3  
The possibility and applicability of the continuous membrane column concept to the membrane separation process of pervaporation has been demonstrated. It shows that a mixture of two or more liquids can be separated to a high degree without cascading several stages of individual pervaporation units. The degree of enrichment is unlimited in a continuous membrane column while a maximum limit exists in a conventional pervaporator. This new concept of membrane operation has been shown previously to give enhanced separations in gaseous systems without the expense and complexity of a multi-staged cascade.

The permeabilities of silicone rubber to ethanol—water and isopropanol—water mixtures were determined at 25 and 40°C as a function of concentration. Separation experiments were carried out in small membrane columns. Included were instances in which feed mixtures just below the azeotrope (because of the small size of the experimental column) were enriched beyond the normal azeotropic composition (0.89 mole fraction ethanol) on a continuous basis. Feed compositions at other levels were also investigated; for example, a feed at 0.50 mole fraction ethanol was continuously separated into two streams at 0.69 and 0.12 mole fraction ethanol Finally, a mathematical analysis has been developed which adequately describes capillary membrane pervaporation within a continuous membrane column configuration.  相似文献   


9.
Amongst the alternative fuels obtained from renewable resources alcohol from fermentation may become one of the most important. The combination of fermentation with pervaporation in a membrane bioreactor offers the advantage of continuous processing. In this membrane bioreactor alcohol-selective membranes are needed. The performance of the membranes available at present is poor. Much research is being carried out on silicone rubber but the selectivity of this material for alcohol is too low. Addition to the membrane of a sorptive filler with a high selectivity towards alcohol appears to improve both selectivity and flux. Silicalite, a novel type of hydrophobic zeolite, has been used for that purpose. Results presented in this paper indicate that transport through the zeolite pores contributes to a major extent to the total transport through the membrane.  相似文献   

10.
Lactic acid fermentation in cell-recycle membrane bioreactor   总被引:2,自引:0,他引:2  
Traditional lactic acid fermentation suffers from low productivity and low product purity. Cell-recycle fermentation has become one of the methods to obtain high cell density, which results in higher productivity. Lactic acid fermentation was investigated in a cell-recycle membrane bioreactor at higher substrate concentrations of 100 and 120 g/dm3. A maximum cell density of 145 g/dm3 and a maximum productivity of 34 g/(dm3…h) were achieved in cell-recycle fermentation. In spite of complete consumption of substrate, there was a continuous increase in cell density in cell-recycle fermentation. Control of cell density in cell-recycle fermentation was attempted by cell bleeding and reduction in yeast extract concentration.  相似文献   

11.
陈红亮  李砚硕  刘杰  杨维慎  林励吾 《催化学报》2005,26(12):1039-1041
 利用原位水热合成法在二氧化硅陶瓷管上成功制备出高性能的silicalite-1分子筛膜,并利用扫描电子显微镜进行了表征. 结果表明,在二氧化硅陶瓷管上合成的分子筛膜比在氧化铝陶瓷管上合成的分子筛膜具有更高的分离性能和热稳定性,说明二氧化硅载体更适合制备高性能的silicalite-1分子筛膜.  相似文献   

12.
The continuous making of wine by a delignified cellulosic (DC) material-supported biocatalyst is reported. It was prepared by immobilizing the alcohol resistant strain AXAZ-1 on DC material. The product was found suitable for the continuous process in industrial applications. The operational stability was maintained for 2 mo with monitoring the ethanol concentration, wine, and alcohol productivities as well as the stability of °Be density at the outlet. Wine productivity was three to sixfold higher than obtained by natural fermentation, alcohol concentrations of the wine was in the range of 9.3-211.2% v/v and low volatile acidities of 0.15-20.36 g acetic acid/L were obtained. The effect of total acidity and flow rate of must were also examined. To demonstrate that the operational stability of the bioreactor is due to DC material that promotes the fermentation, and it takes place at even higher ethanol levels, an analogous system of kissiris supported biocatalyst was studied. Likewise, the tolerance in the alcohol concentration, as compared with free cells, were studied by their stability of the activity in the repeated batch fermentation of must.  相似文献   

13.
渗透汽化优先透醇分离膜   总被引:1,自引:0,他引:1  
展侠  李继定  黄军其  陈翠仙 《化学进展》2008,20(9):1416-1426
20世纪70年代的能源危机促使了人们对可再生能源-发酵法制备乙醇与节能分离工艺的探求。渗透汽化膜分离技术作为一种新兴的膜分离技术,具有分离效率高、低能耗、易于和发酵装置耦合、易于与其它分离方法联用等显著优点,特别适用于乙醇/水等恒沸混合物体系的分离。本文简要介绍了渗透汽化优先透醇膜的研究背景,总结并分析了用于指导膜材料选择的理论,详细介绍了用于制备优先透醇膜的含硅聚合物、含氟聚合物、有机/无机复合膜材料以及其他聚合物等膜材料的的结构特点、改性方法及膜材料分子结构与渗透汽化性能间的关系,并对不同膜材料对乙醇/水的渗透汽化分离性能进行了总结比较,在此基础上总结了目前渗透汽化乙醇/水分离膜存在的问题,并对其未来的研究方向和发展前景进行了展望。  相似文献   

14.
Grape must fermentation performance and volatiles formation by simultaneously cryophilic and thermotolerant yeast (strain AXAZ-1), isolated from grapes in Greece, was evaluated in a wide temperature range (5?C40°C). Yeast strain was immobilized on brewer??s spent grains (BSG) and the formed biocatalyst was introduced into a Multi-Stage Fixed Bed Tower (MFBT) bioreactor. Almost complete sugar utilization from the aforementioned biocatalyst was observed in a wide temperature spectrum, ranging from 5?°C to 37?°C, while at 40?°C residual sugar was up to 29?g/l. Time to complete fermentation with the immobilized yeast ranged from 290?h at 5?°C and 120?h at 40?°C to 25?h at 33?°C. The daily ethanol productivity reached maximum (88.6?g/l) and minimum (5.6?g/l) levels at 33?°C and 5?°C, respectively. The aroma-related compounds?? profiles of immobilized cells at different fermentation temperatures were evaluated by using solid phase microextraction (SPME) gas chromatography/mass spectrometry (GC/MS). Must fermentation resulted in a high-quality fermentation product due to the low concentrations of higher and amyl alcohols at all temperatures tested. AXAZ-1 is a very promising strain for quality wine production, as it is capable of performing fermentations of high ethanol concentration and productivities in both low and high temperatures.  相似文献   

15.
Separation of water–ethanol mixture through a membrane was carried out by pervaporation using a membrane which provided a hydrogen-bonding interaction. A membrane obtained from poly(acrylic acid-co-acrylonitrile) was effective for a selective separation of water from aqueous ethanol solution by pervaporation technique. Spectroscopic and flux analyses verified that this high selectivity toward water was attributed to the hydrogen-bonding interaction between water and acrylic acid (carboxylic acid) unit in the membrane. On the other hand, a membrane from poly(acrylic acid-co-styrene) preferentially permeated ethanol in the low water feed concentration region.  相似文献   

16.
Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.  相似文献   

17.
Repeated batch cultivation (empty-and-fill protocol) using obligate anaerobe Clostridium diolis was attempted in the present study to improve the production of 1,3-propanediol (1,3-PD). In repeated batch operation, 20?% (v/v) culture broth was removed from the bioreactor and supplemented with an equal volume of fresh nutrient medium when the residual glycerol concentration in the bioreactor decreased below 15?g/L. Four cycles of culture broth withdrawal and subsequent replacement resulted in achieving a 1,3-PD concentration of 67.8?g/L with a productivity of 1.04?g/L/h at the end of 65?h. This represented a 1,3-PD concentration and productivity enhancement by 2.6-fold and 1.5-fold, respectively, as compared to batch 1,3-PD fermentation. This is the first report on the use of repeated batch mode of bioreactor operation for enhanced 1,3-PD production.  相似文献   

18.
Applied Biochemistry and Biotechnology - By applying pervaporation and microfiltration to an ethanol fermentation, the substrate consumption was greater by a factor of two and the productivity by a...  相似文献   

19.
Ethanol production from corn starch in a fluidized-bed bioreactor   总被引:1,自引:0,他引:1  
The production of ethanol from industrial dry-milled corn starch was studied in a laboratory-scale fluidized-bed bioreactor using immobilized biocatalysts. Saccharification and fermentation were carried out either simultaneously or separately. Simultaneous saccharification and fermentation (SSF) experiments were performed using small, uniform κ-carrageenan beads (1.5–2.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. Dextrin feeds obtained by the hydrolysis of 15% drymilled corn starch were pumped through the bioreactor at residence times of 1.5–4h. Single-pass conversion of dextrins ranged from 54–89%, and ethanol concentrations of 23–36 g/L were obtained at volumetric productivities of 9–15 g/L-h. Very low levels of glucose were observed in the reactor, indicating that saccharification was the rate-limiting step. In separate hydrolysis and fermentation (SHF) experiments, dextrin feed solutions of 150–160 g/L were first pumped through an immobilized-glucoamylase packed column. At 55°C and a residence time of 1 h, greater than 95% conversion was obtained, giving product streams of 162–172 g glucose/L. These streams were then pumped through the fluidized-bed bioreactor containing immobilized Z. mobilis. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L were achieved, resulting in an overall process productivity of 23 g/L-h. Atresidence times of 1.5 and 1 h, conversions of 75 and 76%, ethanol concentrations of 49 and 47 g/L, and overall process productivities of 19 and 25 g/L-h, respectively, were achieved.  相似文献   

20.
Marek Gryta 《Chemical Papers》2013,67(9):1201-1209
The separation of diluted ethanol solutions and fermentation broths by membrane distillation was investigated. The influence of stream flow-rate on the ethanol flux was studied. An evaluation of the process conditions on the separation degree of ethanol was performed with the application of hydrophobic capillary membranes composed of polypropylene. By removing the alcohol via membrane distillation, it is possible to achieve a higher content of ethanol in the permeate than that in the broth. The enrichment coefficient amounted to 4–6.5, and decreased with an increase of the ethanol concentration in the broth. It was found that the flow-rate affects the value of the enrichment coefficient. A positive influence of carbon dioxide on the ethanol transport through the capillary membrane was observed. The evolution of CO2 bubbles from the broth increases the stream turbulence, probably enhancing the alcohol concentration in the layer adjacent to the membrane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号