首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent experiments have shown that the time dependence of fluorescence Stokes shift of a chromophore is substantially different when the chromophore is located in a molten globule (MG) state and in the native state of the same protein. To understand the origin of this difference, particularly the role of water in the differential solvation of the protein in the native and the MG states, we have carried out fully atomistic molecular dynamics simulations with explicit water of a partially unfolded MG state of the protein HP-36 and compared the results with the solvation dynamics of the protein in the folded native state. It is observed that the polar solvation dynamics of the three helical segments of the protein is influenced in a nonuniform heterogeneous manner in the MG state. While the equilibrium solvation time correlation function for helix-3 has been found to relax faster in the MG state as compared to that in the native state, the decay of the corresponding function for the other two helices slows down in the MG state. A careful analysis shows that the origin of such heterogeneous relative solvation behavior lies in the differential location of the polar probe residues and their exposure to bulk solvent. We find a significant negative cross-correlation between the contribution (to the solvation energy of a tagged amino acid residue) of water and the other groups of the protein, indicating a competing role in solvation. The sensitivity of solvation dynamics to the secondary structure and the immediate environment can be used to discriminate the partially unfolded and folded states. These results therefore should be useful in explaining recent solvation dynamics experiments on native and MG states of proteins.  相似文献   

2.
Atomistic molecular dynamics simulations of the folded native structure and a partially unfolded molten globule structure of the protein villin headpiece subdomain or HP-36 have been carried out with explicit solvent to explore the effects of unfolding on the dynamical behavior of water present in the hydration layers of different segments (three alpha-helices) of the protein. The calculations revealed that the unfolding of helix-2 influences the translational and rotational motions of water present in the hydration layers of the three helices in a heterogeneous manner. It is observed that a correlation exists between the unfolding of helix-2 and the microscopic kinetics of protein-water hydrogen bonds formed by its residues. This in turn has an influence on the rigidity of the hydration layers of the helices in the unfolded structure versus that in the folded native structure. These results should provide a microscopic explanation to recent solvation dynamics experiments on folded native and unfolded structures of proteins.  相似文献   

3.
After a brief review of the use of photochemical triggers and heme metal substitution to probe the folding dynamics of cytochrome c, we present new results on the photophysics and photochemistry of folded and unfolded states of the zinc-substituted protein (Zn-cyt c). Our measurements of Zn-cyt c triplet state decay kinetics reveal a systematic isotope effect on lifetimes: the decay in the folded protein (tau(H)2(O) approximately 10 ms) is only modestly affected by isotopically substituted buffers (k(H)2(O)/k(D)2(O) = 1.2), whereas a reduced triplet lifetime (approximately 1.3 ms) and greater isotope effect (1.4) were found for the chemically denatured, fully unfolded protein. The shortest lifetime (0.1-0.4 ms) and greatest isotope effect (1.5) were found for a fully exposed model compound, zinc-substituted N-acetyl-microperoxidase-8 (ZnAcMP8), implying that the unfolded protein provides some protection to the Zn-porphyrin group even under fully denaturing conditions. Further evidence for partial structure in unfolded Zn-cyt c comes from bimolecular quenching experiments using Ru(NH(3))(6)(3+) as an external Zn-porphyrin triplet state quencher. In the presence of quencher, partially unfolded protein at midpoint guanidinium chloride (GdmCl) and urea concentrations exhibits biphasic triplet decay kinetics, a fast component corresponding to an extended, solvent-exposed state (6.6 x 10(8) M(-1) s(-1) in GdmCl, 6.3 x 10(8) M(-1) s(-1) in urea) and a slow component attributable to a compact, relatively solvent-inaccessible, state (5.9 x 10(7) M(-1) s(-1) in GdmCl, 8.6 x 10(6) M(-1) s(-1) in urea). The variation in Zn-porphyrin solvation for the compact states in the two denaturants reveals that the cofactor in the partially unfolded protein is better protected in urea solutions.  相似文献   

4.
We have performed atomistic molecular dynamics simulations of aqueous solutions of HP-36 at 300 K in its native state, as well as at high temperatures to explore the unfolding dynamics of the protein and its correlation with the motion of water around it. On increasing the temperature a partially unfolded molten globule state is formed where the smallest alpha helix (helix 2) unfolds into a coil. It is observed that the unfolding is initiated around the residue Phe-18 which shows a sharp displacement during unfolding. We have noticed that the unfolding of the protein affects the density of water near the protein surface. Besides, the dynamics of water in the protein hydration layer has been found to be strongly correlated with the time evolution of the unfolding process. We have introduced and calculated a displacement time correlation function to monitor the change in water motion relative to the protein backbone during unfolding. We find that the unfolding of helix 2 is associated with an increase in mobility of water around it as compared to water around the other two helices. We have also explored the microscopic aspects of secondary structure specific and site specific solvation dynamics of the protein. The calculations reveal that unfolding influences the solvation dynamics of the protein molecule in a heterogeneous manner depending on the location of the polar probe residues. This seems to be in agreement with recent experimental findings.  相似文献   

5.
The molten globule state has been proposed as a major intermediate of protein folding. However it has proven difficult to obtain thermodynamic data characterizing this state. To explore an alternative approach for characterization of the molten globule state, n-alkyl sulfates induced formation of the molten globule state of horse cytochrome c at pH 2 was studied by isothermal titration calorimetry (ITC). Titration of the acid unfolded state of cytochrome c with sodium octyl sulfate, sodium dodecyl sulfate or sodium tetradecyl sulfate, generated an exothermic reaction for formation of the molten globule state. The effects of various n-alkyl sulfates on the acid unfolded state of cytochrome c demonstrated that the increased alkyl chain length enhanced the exothermic values of calorimetric enthalpy and induced a more compact molten globule states. The heat contents agreed well with the conformational transition measured by molar ellipticity at 222 nm ([θ]222) and Stoke radius (Rs) values. These results emphasize that isothermal titration calorimetry provides a reasonable alternative method for characterization of the molten globule state.  相似文献   

6.
Molten globules are compact, partially folded proteins postulated to be general intermediates in protein folding. Human alpha-lactalbumin (alpha-LA) is a two-domain Ca(2+)-binding protein that partially unfolds at low pH to form a molten globule. NMR spectra of molten globules are characterized by broadened resonances due to conformational fluctuations on microsecond to millisecond time scales. These species are often studied at high temperature where NMR resonances are observed to sharpen. The effect of higher temperatures on fast time-scale backbone dynamics of molten globules has not been investigated previously. Here, 1D (15)N direct-detection and 2D indirect-detection (1)H-(15)N heteronuclear NOE experiments have been used to probe fast time-scale dynamics at low and high temperatures for three disulfide-bond variants of human alpha-LA that form molten globules. Disulfide bonds are found to have a significant effect on backbone dynamics within the beta-domain of the molten globule; within the alpha-domain, dynamics are not significantly influenced by these bonds. At 20 degrees C, backbone mobility is significantly decreased in both domains of the molten globule compared to the mobility at 40-50 degrees C. Heteronuclear NOE values determined at 20 degrees C for the alpha-domain are closely similar to those observed for native alpha-LA, indicating that the alpha-LA molten globule has even more native-like character than suggested by studies conducted at higher temperature. Our results highlight the importance of considering the temperature dependence of the molten globule ensemble when making comparisons between experimental data obtained under different conditions.  相似文献   

7.
We have employed fluorescence energy transfer (FET) kinetics to probe unfolded and molten globule states of five dansyl (Dns) variants of Saccharomyces cerevisiae iso-1 cytochrome c. The covalently bound Fe(III) heme group quenches Dns fluorescence by energy transfer; measurements of FET kinetics yielded distributions of D-A distances (P(r)) for these states. The P(r) distributions and corresponding mean force potentials (U(r)) show that the cytochrome c molten globule is a highly structured state with a substantial number of native interactions. Wide P(r) distributions directly reflect the dynamic nature and conformational diversity of this molten globule. P(r) distributions for the "burst-phase" refolding intermediate suggest that the equilibrium cytochrome c molten globule is not a suitable model for early intermediates formed during protein refolding.  相似文献   

8.
Streblin, a serine proteinase from plant Streblus asper, has been used to investigate the conformational changes induced by pH, temperature, and chaotropes. The near/far UV circular dichroism activities under fluorescence emission spectroscopy and 8-aniline-1-naphthalene sulfonate (ANS) binding have been carried out to understand the unfolding of the protein in the presence of denaturants. Spectroscopic studies reveal that streblin belongs to the α+β class of proteins and exhibits stability towards chemical denaturants, guanidine hydrochloride (GuHCl). The pH-induced transition of this protein is noncooperative for transition phases between pH 0.5 and 2.5 (midpoint, 1.5) and pH 2.5 and 10.0 (midpoint, 6.5). At pH 1.0 or lower, the protein unfolds to form acid-unfolded state, and for pH 7.5 and above, protein turns into an alkaline denatured state characterized by the absence of ANS binding. At pH 2.0 (1 M GuHCl), streblin exists in a partially unfolded state with characteristics of a molten globule state. The protein is found to exhibit strong and predominant ANS binding. In total, six different intermediate states has been identified to show protein folding pathways.  相似文献   

9.
pH-induced unfolding and refolding of apo-neuroglobin (apo-Ngb) were investigated by UV, fluorescence, circular dichroism (CD) spectra and light scattering measurements. Results revealed that apo-Ngb became partially unfolded at around pH 5.0, with evidences from a red shift in the fluorescence spectra, a decrease in the far-UV CD and a sharp peak in the light scattering intensity. Further lowering of the pH reversed these effects, suggesting that apo-Ngb folds back to a compact state. At pH 2.0, the apo-Ngb forms a folding intermediate known as molten globule (MG), which is possessed of native-like secondary structure and almost complete loss of tertiary structure. Based on these results, the acid-induced denaturation pathway of apo-Ngb can be illustrated from the native state (N), via a partially unfolded state (UA) to the molten globule state (MG).  相似文献   

10.
Water-protein interactions play a direct role in protein folding. The chain collapse that accompanies protein folding involves extrusion of water from the nonpolar core. For many proteins, including apomyoglobin (apoMb), hydrophobic interactions drive an initial collapse to an intermediate state before folding to the final structure. However, the debate continues as to whether the core of the collapsed intermediate state is hydrated and, if so, what the dynamic nature of this water is. A key challenge is that protein hydration dynamics is significantly heterogeneous, yet suitable experimental techniques for measuring hydration dynamics with site-specificity are lacking. Here, we introduce Overhauser dynamic nuclear polarization at 0.35 T via site-specific nitroxide spin labels as a unique tool to probe internal and surface protein hydration dynamics with site-specific resolution in the molten globular, native, and unfolded protein states. The (1)H NMR signal enhancement of water carries information about the local dynamics of the solvent within ~10 ? of a spin label. EPR is used synergistically to gain insights on local polarity and mobility of the spin-labeled protein. Several buried and solvent-exposed sites of apoMb are examined, each bearing a covalently bound nitroxide spin label. We find that the nonpoloar core of the apoMb molten globule is hydrated with water bearing significant translational dynamics, only 4-6-fold slower than that of bulk water. The hydration dynamics of the native state is heterogeneous, while the acid-unfolded state bears fast-diffusing hydration water. This study provides a high-resolution glimpse at the folding-dependent nature of protein hydration dynamics.  相似文献   

11.
For the past twenty years, the small, 76-residue protein ubiquitin has been used as a model system to study protein structure, stability, folding and dynamics. In this time, ubiquitin has become a paradigm for both the experimental and computational folding communities. The folding energy landscape is now uniquely characterised with a plethora of information available on not only the native and denatured states, but partially structured states, alternatively folded states and locally unfolded states, in addition to the transition state ensemble. This Perspective focuses on the experimental characterisation of ubiquitin using a comprehensive range of biophysical techniques.  相似文献   

12.
Despite the daily use of urea to influence protein folding and stability, the molecular mechanism with which urea acts is still not well understood. Here the use of combined parallel tempering and metadynamics simulation allows us to study the free-energy landscape associated with the folding/unfolding of β-hairpin GB1 equilibrium in 8 M urea and pure water. The nature of the unfolded state in both solutions has been analyzed: in urea solution the addition of denaturants acts to expand the denatured state, while in pure water solution the unfolded state is noticeably more compact. For what concerns the mechanism by which urea acts as a denaturant, a preferential direct interaction between urea molecules and protein backbone has been found. However, the bias toward urea solvation is largest at intermediate values of the gyration radius.  相似文献   

13.
The partial unfolding of human lysozyme underlies its conversion from the soluble state into amyloid fibrils observed in a fatal hereditary form of systemic amyloidosis. To understand the molecular origins of the disease, it is critical to characterize the structural and physicochemical properties of the amyloidogenic states of the protein. Here we provide a high-resolution view of the unfolding process at low pH for three different lysozyme variants, the wild-type protein and the mutants I56T and I59T, which show variable stabilities and propensities to aggregate in vitro. Using a range of biophysical techniques that includes differential scanning calorimetry and nuclear magnetic resonance spectroscopy, we demonstrate that thermal unfolding under amyloidogenic solution conditions involves a cooperative loss of native tertiary structure, followed by progressive unfolding of a compact, molten globule-like denatured state ensemble as the temperature is increased. The width of the temperature window over which the denatured ensemble progressively unfolds correlates with the relative amyloidogenicity and stability of these variants, and the region of lysozyme that unfolds first maps to that which forms the core of the amyloid fibrils formed under similar conditions. Together, these results present a coherent picture at atomic resolution of the initial events underlying amyloid formation by a globular protein.  相似文献   

14.
The design and total chemical synthesis of a monomeric native-like four-helix bundle protein is presented. The designed protein, GTD-Lig, consists of 90 amino acids and is based on the dimeric structure of the de novo designed helix-loop-helix GTD-43. GTD-Lig was prepared by the native chemical ligation strategy and the fragments (45 residues long) were synthesized by applying standard fluorenylmethoxycarbonyl (Fmoc) chemistry. The required peptide-thioester fragment was prepared by anchoring the free gamma-carboxy group of Fmoc-Glu-allyl to the solid phase. After chain elongation the allyl moiety was orthogonally removed and the resulting carboxy group was functionalized with a glycine-thioester followed by standard trifluoroacetic acid (TFA) cleavage to produce the unprotected peptide-thioester. The structure of the synthetic protein was examined by far- and near-UV circular dichroism (CD), sedimentation equilibrium ultracentrifugation, and NMR and fluorescence spectroscopy. The spectroscopic methods show a highly helical and native-like monomeric protein consistent with the design. Heat-induced unfolding was studied by tryptophan absorbance and far-UV CD. The thermal unfolding of GTD-Lig occurs in two steps; a cooperative transition from the native state to an intermediate state and thereafter by noncooperative melting to the unfolded state. The intermediate exhibits the properties of a molten globule such as a retained native secondary structure and a compact hydrophobic core. The thermodynamics of GuHCl-induced unfolding were evaluated by far-UV CD monitoring and the unfolding exhibited a cooperative transition that is well-fitted by a two-state mechanism from the native to the unfolded state. GTD-Lig clearly shows the characteristics of a native protein with a well-defined structure and typical unfolding transitions. The design and synthesis presented herein is of general applicability for the construction of large monomeric proteins.  相似文献   

15.
An increasing number of proteins are found to contain a knot in their polypeptide chain. Although some studies have looked into the folding mechanism of knotted proteins, why and how these complex topologies form are still far from being fully answered. Moreover, no experimental information about how the knot moves during the protein‐folding process is available. Herein, by combining single‐molecule fluorescence resonance energy transfer (smFRET) experiments with molecular dynamics (MD) simulations, we performed a detailed study to characterize the knot in the denatured state of TrmD, a knotted tRNA (guanosine‐1) methyltransferase from Escherichia coli, as a model system. We found that the knot still existed in the unfolded state of TrmD, consistent with the results for two other knotted proteins, YibK and YbeA. More interestingly, both smFRET experiments and MD simulations revealed that the knot slid towards the C‐terminal during the unfolding process, which could be explained by the relatively strong interactions between the β‐sheet core at the N terminal of the native knot region. The size of the knot in the unfolded state is not larger than that in the native state. In addition, the knot slid in a “downhill” mode with simultaneous chain collapse in the denatured state.  相似文献   

16.
The interaction of 2,2,2-trifluoroethanol (TFE) with concanavalin A has been investigated by using a combination of differential scanning calorimetry, isothermal titration calorimetry (ITC), circular dichroism (CD), and fluorescence spectroscopy at pH 2.5 and 5.2. All of the calorimetric transitions at both the pH values were found to be irreversible. In the presence of 4 mol kg(-1) TFE at pH 2.5, concanavalin A is observed to be in a partially folded state with significant loss of native tertiary structure. The loss of specific side chain interactions in the transition from native to the TFE-induced partially folded state is demonstrated by the loss of cooperative thermal transition and reduction of the CD bands in the aromatic region. Acrylamide quenching, 8-anilinonaphthalene sulfonate (ANS) binding, and energy transfer also suggest that in the presence of 4 mol kg(-1) TFE at pH 2.5 concanavalin A is in a molten globule state. ITC has been used for the first time to characterize the energetics of ANS binding to the molten globule state. ITC results indicate that the binding of ANS to the molten globule state and acid-induced state at pH 2.5 displays heterogeneity with two classes of non-interacting binding sites. The results provide insights into the role of hydrophobic and electrostatic interactions in the binding of ANS to concanavalin A. The results also demonstrate that ITC can be used to characterize the partially folded states of the protein both qualitatively and quantitatively.  相似文献   

17.
The ubiquitin mutant UbG folding experiments of Sabelko et al., in which "strange kinetics" were observed, are interpreted in terms of a simple kinetic model. A minimal set of states consisting of a semicompact globule, two off-pathway traps, and the native state are included; the fully unfolded state is not considered because folding to the semicompact globule is fast. Both the low- and the high-temperature experiments of Sabelko et al. are fitted by a system of kinetic equations determining the transitions between these states. It is possible that cold- and heat-denaturated states of UbG are the basis of the off-pathway traps. The fits of the kinetic model to the experimental results provides an estimate of the rate constants for the various reaction channels and show how their contributions vary with temperature. Introduction of an on-pathway intermediate instead of one of the off-pathway traps does not lead to agreement with the experiments.  相似文献   

18.
19.
Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the solvation dynamics of a probe covalently attached to a protein (human serum albumin (HSA)) has been studied using femtosecond up-conversion. For this study, a solvation probe, 7-diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM) has been covalently attached to the lone cysteine group (cys-34) of the protein HSA. Addition of 1.5 M RTIL or 6 M GdnHCl causes a red shift of the emission maxima of CPM bound to HSA by 3 nm and 12 nm, respectively. The average solvation time ?τ(s)? decreases from 650 ps (in native HSA) to 260 ps (~2.5 times) in the presence of 1.5 M RTIL and to 60 ps (~11 times) in the presence of 6 M GdnHCl. This is ascribed to unfolding of the protein by RTIL or GdnHCl and therefore making the probe CPM more exposed. When 1.5 M RTIL is added to the protein denatured by 6 M GdnHCl in advance, a further ~5 nm red shift along with further ~2 fold faster solvent relaxation (?τ? ~30 ps) is observed. Our previous fluorescence correlation spectroscopy study [D. K. Sasmal, T. Mondal, S. Sen Mojumdar, A. Choudhury, R. Banerjee, and K. Bhattacharyya, J. Phys. Chem. B 115, 13075 (2011)] suggests that addition of RTIL to the protein denatured by 6 M GdnHCl causes a reduction in hydrodynamic radius (r(h)). It is demonstrated that in the presence of RTIL and GdnHCl, though the protein is structurally more compact, the local environment of CPM is very different from that in the native state.  相似文献   

20.
A protein can exist in multiple states under native conditions and those states with low populations are often critical to biological function and self‐assembly. To investigate the role of the minor states of an acyl carrier protein, NMR techniques were applied to determine the number of minor states and characterize their structures and kinetics. The acyl carrier protein from Micromonospora echinospora was found to exist in one major folded state (95.2 %), one unfolded state (4.1 %), and one intermediate state (0.7 %) under native conditions. The three states are in dynamic equilibrium and the intermediate state very likely adopts a native‐like structure and is an off‐pathway folding product. The intermediate state may mediate the formation of oligomers in vitro and play an important role in the recognition of partner enzymes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号