首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
A characteristic feature of atmospheric vortices of a convective nature is the powerful radial motions of the medium at their base. In order to take these motions into account in analytical and numerical modeling, it is necessary to use point or distributed vortex sinks (vortex sources), which we will call helical vortices (from the shape of the streamlines of the flows produced) [1]. It seems likely that the interaction of point helical vortices was first considered in the until recently little-known study [2] which was included in the collection [3] and partially overlaps with the more recent studies [4, 5].Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 183–185, July–August, 1995.  相似文献   

2.
Existing computational methods [1–5] do not enable one to calculate complex flows behind steps, accounting for nonuniformity of the incident supersonic flow and the effect of compression and expansion waves arriving in the near-wake region. For example, computational methods based on the methods of [1] or [2] are used mainly in uniform supersonic flow ahead of the base edge and, for the most part, cannot be used to calculate flow in annular nozzles with irregular conditions. An exception is reference [6], which investigated flow in an annular nozzle behind a cylindrical center-body. The present paper suggests a method, based on references [7, 8] for calculating the base pressure behind two-dimensional and three-dimensional steps, washed by a supersonic jet.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 43–51, November– December 1977.  相似文献   

3.
To characterize the turbulence of boundary layers in the energy-bearing interval of wave numbers several turbulence scales are sometimes used (for example, [1, 2]). In particular, the universality of the semiempirical model of turbulence [2] can be extended in this way. A turbulence model with one equation (energy balance of the turbulence) has been constructed and used [3–6] and it has been established that the number of problems that can be solved for a universal choice of the values of the empirical coefficients increases appreciably if not one but two turbulent scales are used. In the present paper, it is shown that the introduction of a second scale makes it possible to take into account the interaction of shear layers in flows with two shear layers (for example, a channel or jet), and also to take into account the influence of turbulence of an external flow on a boundary layer. The interaction of shear layers is taken into account in theories containing a transport equation for the turbulent frictional stress t (for example, [7]), in which the essence of the interaction reduces to diffusion of t from layer to layer. In the present paper, a predominant volume interaction effect is assumed. It takes the form of a difference between the interaction of large-scale vortices with a shear deformation motion in flows with one and two shear layers, and also in the presence of turbulence in an external flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 8, pp. 17–25, November–December, 1982.  相似文献   

4.
When a plane shock wave impinges on bodies with grooves and when a supersonic stream of gas flows past such bodies a complicated flow pattern develops. In a number of cases oscillations of the bow wave [1–3] and an anomalous heating of the gas in the groove [4–6] have been observed. Unsteady reflection of shock waves from bodies with grooves and the processes occurring inside the grooves have been investigated comparatively little.Translated from Izvestiya Akademii Nauk SSSR, Hekhanika Zhidkosti 1 Gaza, No. 5, pp. 180–186, September–October, 1935.The authors wish to thank V. I. Ivanov for carrying out the calculations.  相似文献   

5.
A complex flow consisting of an outer inviscid stream, a dead-water separation domain, and a boundary layer, which interact strongly, is formed in viscous fluid flows with separation at the streamlined profile with high Re numbers. Different jet and vortex models of separation flow are known for an inviscid fluid; numerical, asymptotic, and integral methods [1–3] are used for a viscous fluid. The plane, stationary, turbulent flow through a turbine cascade by a constant-density fluid without and with separation from the inlet edge of the profile and subsequent attachment of the stream to the profile (a short, slender separation domain) is considered in this paper.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 34–44, May–June, 1978.  相似文献   

6.
The limiting amplitudes of acoustic oscillations in a cylindrical volume of a heat releasing medium in which one or several modes are unstable in the linear approximation are determined. One of the mechanisms limiting the amplitudes of unstable acoustic modes is the transfer of energy from them to damped modes by nonlinear interaction. The nonlinear interactions of plane acoustic waves in a long channel have been considered by Artamonov and Vorob'ev [1]; in the present paper, the interaction of mixed longitudinal—transverse acoustic modes in a closed cylindrical volume is considered. The equations describing the interaction of two and three longitudinal—transverse modes are derived and investigated in the quadratic approximation by the method of slowly varying amplitudes and phases of the oscillations [2]. The treatment is applicable to a high-temperature gas, for which general stability conditions in the linear approximation have been formulated by Artamonov [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 3–9, September–October, 1982.I should like to express my thanks to K. I. Artamonov (deceased) for suggesting the problem and for scientific supervision and A. P. Vorob'ev for constant interest in the work and helpful advice.  相似文献   

7.
Galkin  V. S.  Kogan  M. N.  Makashev  N. K. 《Fluid Dynamics》1984,19(3):449-458
The present paper is made necessary by the publication of the foregoing paper in this issue by Kolesnichenko [1]. It considers the basic propositions of the generalized Chapman-Enskog method and analyzes the arguments put forward by Kolesnichenko [1] and the validity of the method. The position of the results obtained by Kolesnichenko [14–17] is indicated. Nonequilibrium flows of multiatomic gases in which there occur processes of exchange of internal energy of the molecules in collisions between them and chemical reactions (such processes are called inelastic) are encountered frequently in nature and technology. It is therefore naturally of interest to derive gas-dynamic equations for such flows. The methods of the kinetic theory of gases were first used to obtain equations describing the limiting cases of very fast inelastic processes that take place in times of the order of the molecule-molecule collision times (equilibrium case) and very slow inelastic processes that take place over times of the order of the characteristic flow time (relaxation case). In [2–5], an algorithm was proposed for deriving gas-dynamic equations valid for arbitrary ratios of the rates of the elastic and inelastic processes and reducing to the well-known equations for the limiting cases already mentioned. The algorithm is called the generalized Chapman-Enskog method (abbreviated to the generalized method). The development, modification, and analysis of its properties can be found in [4, 6–13]. In [1], Kolesnichenko has questioned the validity of this algorithm.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 126–136, May–June, 1984.We thank V. A. Rykov for helpful and constructive discussions of the work.  相似文献   

8.
Vortical nonstationary viscous incompressible flows in the space between coaxial cylinders or hemispherical segments rotating with a constant angular acceleration about a stationary axis of symmetry are analyzed numerically for Reynolds numbers Re — 1–10. It is shown that laminar circulating motions are realized. Two vortices form in the flow. The positions of these vortices depend substantially on the geometry of the rotating cavity.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 47–52, March–April, 1995.  相似文献   

9.
Certain self-similar problems involving the sudden motion of a wedge which were treated in the linear approximation in [1–3] are studied by the method of matched asymptotic expansions. The nature of the wave boundary of the perturbed region is determined. Second-approximation solutions are constructed which describe flows behind weak shock fronts propagating in a stationary gas and behind fronts of weak discontinuity lines propagating by known uniform flows. A boundary-value problem is formulated whose solution describes, in first approximation, flows in the neighborhoods of points of interaction of the fronts. The existence of similarity rules of flows in these nieghborhoods is estimated. An approximate solution of the problems is given.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 37–47, May–June, 1976.  相似文献   

10.
A numerical investigation in the approximation of boundary layer theory has been made of the development of the flow near the surface of a rotating plate in a two-dimensional flow with rectilinear streamlines perpendicular to the leading edge in a rotating coordinate system attached rigidly to the plate. In an earlier investigation [1] using the approximate method of integral relations, Kurosaka obtained and described quantitatively a transition from a Blasius boundary layer to an Eckmann boundary layer in the form of three-dimensional oscillations. The solution described in the present paper confirms the oscillatory nature of the development of the boundary layer, but the quantitative results differ strongly from Kurosaka's.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 154–157, May–June, 1982.  相似文献   

11.
Plane shear flows of dilatant liquids are considered in the presence of a constant transverse velocity component of the liquid; this component arises from uniform injection (or suction) at the bounding surfaces. It is shown that the presence of transverse drift in the liquid influences the rate of propagation of the leading edge of the shear waves, and this has a number of effects on the flows.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 15–21, July–August, 1973.  相似文献   

12.
We present results of an experimental study on the stability of Taylor–Couette flow in case of counter-rotating cylinders and an imposed axial through flow. We are able to confirm results form recent numerical investigations done by Pinter et al. [24] by measuring the absolute and convective stability boundaries of both propagating Taylor vortices (PTV) and spiral vortices (SPI). Thus our work shows that these theoretical concepts from hydrodynamic stability in open flows apply to experimental counter-rotating Taylor–Couette systems with an imposed axial through flow. PACS 47.20.-k, 05.45.-a, 47.15.fe  相似文献   

13.
The possibility of applying geometrical acoustics to the investigation of the stability of flows in expanding regions was pointed out by Galin and Kulikovskii [1], who investigated the stability of homogeneous gas flows separated by discontinuity surfaces. Eckhoff [2] applied geometrical acoustics to the analysis of the stability of solutions of symmetric hyperbolic systems whose coefficients do not depend explicitly on the time. The treatment was given for unbounded regions in the case when acoustic points are absent. The stability of gas-dynamic flows satisfying these restrictions was considered by Eckhoff and Storesletten [3, 4]. The present paper is devoted to the question of the stability of plane self-similar flows in expanding regions [5] with respect to weak two-dimensional perturbations. Propagation of perturbations through the gas is described in the approximation of geometrical acoustics [6–8]. The intensity of the perturbations is characterized by the total energy E of a wave packet, whose behavior as t → ∞ is chosen as the criterion of stability of the considered flow. It is shown that E → 0 with the time in problems of a strong explosion and a decelerated piston. In the problem of an accelerated piston, the total energy of weak perturbations increases unboundedly with the time.  相似文献   

14.
It is shown that at large vapor contents, as a result of the combined action of phase transitions and capillary effects, the small radially symmetric oscillations of gas-vapor bubbles in an acoustic field are unstable in amplitude. The critical vapor concentration in the bubble separating regions of qualitatively different bubble behavior in the acoustic field is determined. Expressions are obtained for the decay rate of the radial oscillations of the gas-vapor bubble and the growth rate characterizing the rate of increase of oscillation amplitude in the region of instability. It is shown that adding only a slight amount of gas to the vapor bubble leads to a marked decrease in the growth rate. It is found that in the particular case of a vapor bubble the tine growth rate characterizing the development of the instability is of the same order as the second resonance frequency of the vapor bubble. This may serve to explain why in the case of vapor bubble oscillations the second resonance effect, which has been established in a number of theoretical studies and is widely discussed in the literature, has not yet been experimentally confirmed. The problem of spherically symmetrical processes around gasvapor bubbles was posed in [1], and their small oscillations are investigated in detail in [2–4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 79–33, May–June, 1986.The authors are grateful to R. I. Nigmatulin for useful discussions.  相似文献   

15.
A study is made of the three-dimensional problem of determining the parameters of motion of a gaseous chemically active medium near a caustic, the envelope curve of the rays of the wave fronts in the geometrical acoustics approximation. Two limiting processes whereby perturbations propagate [1] can be distinguished, depending on the ratio of the reaction time of the chemical reaction to a macroscopic time: a quasifrozen process and a quasiequilibrium process. The problem is considered in a linear formulation in [2-6] in the absence of viscosity, thermal conductivity, and chemical reactions. Nonlinear equations are derived in [7–10] for an arbitrary nondissipative medium near a caustic. In the present paper Ryzhov's method [1] is used to derive the nonlinear equations of motion of the medium for both types of process. The pressure distributions near and on the caustic itself are found for an incident step wave. The effect of the chemical reaction on how the flow parameters are distributed in the vicinity of the caustic is ascertained. Equations are derived for an inhomogeneous initially moving fluid near a caustic. A nonlinear equation containing a highest derivative of third order is obtained in the vicinity of the caustic for the case of special media in which the limiting velocities of sound in the mixture at rest are close in value. It is shown that the solution of the corresponding linear equation is expressed in the form of a quadrature from the solution for a chemically inert medium and contains oscillations near the wave fronts.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 81–91, March–April, 1977.  相似文献   

16.
A study is made of the problem of the propagation of infinitesimally small perturbations in a gas stream moving in a channel of variable cross section when the flow cannot be regarded as isentropic and irrotational. The solution is found in the framework of the linear theory of the flow of an ideal gas and the quasi-one-dimensional hydraulic approximation for the steady regime. For irrotational and isentropic perturbations in a nozzle, this problem was considered in [1–4]. In [1], the problem is generalized to take into account entropy perturbations in the nozzle for the case of longitudinal oscillations. The present paper treats arbitrary modes in a nozzle and takes into account not only entropy but also vorticity perturbations in the moving stream. For each of the three perturbation types — acoustic, entropy, and vorticity — the solutions are expanded in series in cylindrical functions. It is shown that in the considered approximation each oscillation mode can be analyzed independently of the others. In the special case of flow in a Laval nozzle, the concept of impedance (admittance), which is widely used in acoustics, is generalized to take into account entropy and vorticity perturbations. The contribution to the flow dynamics of the acoustic, entropy, and vorticity perturbations is estimated numerically for longitudinal and transverse modes.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 91–98, January–February, 1982.  相似文献   

17.
Plasma flows in coaxial channels with a truncated central electrode are accompanied by compression and heating of the plasma on the channel axis [1–4]. Such flows were calculated in [1, 4] within the framework of a simple MHD model and by simple numerical methods and, accordingly, the results reflect only the basic qualitative characteristics of compression flows. Below, these flows are investigated in greater detail on the basis of a more accurate physical model with allowance for the finite conductivity, heat conduction and radiation of the plasma and impurities. The cases of anisotropic and classical isotropic heat conduction are considered. The numerical method employed is based on two finite-difference schemes: SHASTA-FCT [5–7] and TVD [8, 6]. The main advantage of these methods is the high resolution of the shock waves and contact discontinuities, which is highly desirable in describing compression flows. The calculations relate to the case of a fully ionized hydrogen plasma.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 102–109, May–June, 1991.In conclusion, the author wishes to express his gratitude to K. V. Brushlinskii and A. I. Morozov for frequent discussions and to K. P. Gorshenin for the use of his calculation results.  相似文献   

18.
Numerous methods have been developed to calculate the aerodynamic characteristics of wings of low aspect ratio in the case when there is flow separation from the wing edges. Among the methods based on direct solution of the three-dimensional Euler equations there are the method of discrete vortices [1, 2] and the panel method [3]. In addition, numerical and asymptotic methods [4, 5] based on the theory of slender bodies [6] are used. One of the most important shortcomings of this theory is the dependence of the flow pattern at a given section of the wing on only the upstream flow. The obtained solutions therefore contain no information about the influence of the trailing edge of the wing, on which, as is well known, the Chaplygin-Zhukovskii condition is satisfied. The aim of the present paper is to construct an asymptotic theory of higher approximation and a corresponding numerical method for calculating flow separation from wings of low aspect ratio in which this shortcoming is absent.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 141–147, July–August, 1982.  相似文献   

19.
Perfect gas flows in an unlimited space, which occur during rectilinear motion of a system of distributed heat sources, are investigated. The next modes in order of growth of the number M are examined: the heat conductive, convective, subsonic, transonic, supersonic, hypersonic. Examples of computations are presented. Flows with distributed heat sources attract ever-increasing attention. Such flows are important, e.g., in the problem of radiation propagation [1–5], in the analysis of a gasdynamic laser resonator and the optical characteristics of a ray [6]. Changes in the density because of absorption of the ray energy, which can result in an essential redistribution of the radiation intensity, are of great interest in these problems. Theoretical investigations of a general nature with distributed heat supply [7–10] are also important for the development of further applications. Gas flows for a given distribution of relatively weak heat sources switched on at a certain time are examined in this paper.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 95–102, September–October, 1978.  相似文献   

20.
A series of papers has been devoted to questions of gas bubble dynamics in viscoeiastic liquids. Of these papers we mention [1–4]. The radial oscillations of a gas bubble in an incompressible viscoeiastic liquid have been studied numerically in [1, 2] using Oldroyd's model [5]. Anexact solution was found in [3], and independently in [4], for the equation of small density oscillations of a cavity in an Oldroyd medium when there is a periodic pressure change at infinity. The analysis of bubble oscillations in a viscoeiastic liquid is complicated by properties of limiting transitions in the rheological equation of the medium. These properties are of particular interest for the problem under investigation. These properties are discussed below, and characteristics of the small oscillations of a bubble in an Oldroyd medium are investigated on the basis of a numerical analysis of the exact solution obtained in [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 82–87, May–June, 1976.The authors are grateful to V. N. Nikolaevskii for useful advice and for discussing the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号