首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously suggested correlations of BL Lac-type objects with the arrival directions of the ultrahigh-energy cosmic ray primaries are tested by making use of the HiRes stereoscopic data. The results of the study support the conclusion that BL Lacs may be cosmic ray sources and suggest the presence of a small (a few percent) fraction of neutral primaries at E > 1019 eV.  相似文献   

2.
Data on muon and electron components of extensive air showers (EAS) (obtained with the EAS MSU array) were used to derive the primary cosmic ray (PCR) mass composition. It is shown that for energies beyond the knee at energy 3 × 1015 eV the abundance of heavy nuclei increases with energy. But at energies above 1017 eV the abundance of light nuclei starts to grow. The primary cosmic ray spectrum in the range 1015–1018 eV is analyzed. It is shown that at energies above 1017 eV the additional component appears and it differs from the bulk of Galactic cosmic rays generated by shocks in SN remnants.  相似文献   

3.
Acceleration of protons and nuclei by shock waves arising during accretion on galaxy clusters is considered. The generation of magnetohydrodynamic turbulence by streaming instability of accelerated particles in a shock precursor, cluster mass distribution, and particle energy loss upon interaction with cosmic microwave background and IR background radiation are taken into account. The contribution of these sources to the cosmic ray intensity observed at energies of 1017–1020 eV is calculated.  相似文献   

4.
The primary cosmic ray energy spectrum at energies of 1015 to 5 × 1017 eV is presented using the results from observations by the Tien Shan HADRON array. The spectrum was obtained from the spectrum of showers according to the number of electrons using a new way of determining the parameter of spatial distribution function S of electrons. The energy spectrum can be extended to low energies up to 2 × 1013 eV using data from separate experiments at the former Tien Shan array. Conclusions are drawn regarding changes in the form of the spectrum and its chemical composition at energies over 1016 eV. The spectrum is compared to the results from the TUNKA installation.  相似文献   

5.
The complicated shape of the cosmic ray spectrum recorded by giant arrays in the energy range 1017–1020 eV is analyzed. It is shown that in the energy region ∼1018–1019 eV the spectrum probably coincides with the injection spectrum whose exponent is equal approximately to 3.2–3.3. The flatter component in the energy region (3.2–5.0)×1019 eV is due to braking of extragalactic protons on primordial photons (the cosmic background radiation). At energies exceeding 3.2×1019 eV the spectrum does not have a blackbody cutoff. The possibility of determining the distances at which cosmic rays originate and investigating the evolution of their sources on the basis of ultrahigh-energy cosmic ray data is discussed. Zh. éksp. Teor. Fiz. 113, 12–20 (January 1998)  相似文献   

6.
The EAS MSU array experimental data are analyzed in relation to the primary cosmic ray composition in the energy range above 1017–1018 eV. The problem of the existence of an additional cosmic ray component, which cannot be explained in the framework of traditional mechanism of Galactic cosmic ray production, is considered. The fraction of gamma-quanta in the primary cosmic radiation is evaluated as well.  相似文献   

7.
The state of the art and the project of modernization of the extensive-air-shower array Carpet-2 of the Baksan Neutrino Observatory of the Institute for Nuclear Research, Russian Academy of Sciences are described. The modernized array will allow the performance of detailed study of variations in the cosmic ray intensity, the energy spectra and composition of primary cosmic rays in the energy range 1013–1016 eV, and the anisotropy of primary cosmic rays with energies above 1013 eV.  相似文献   

8.
Supposed that all of cosmic ray particles of energy below 3×1018eV are mainly originated and accelerated in an individual explosion of the galactic supernovae(SNs).By using an isotropic diffusion propagation model,non-steady state density of the iron nucleus is investigated.Considering the effect of extra-galactic cosmic rays and the variety of the galactic cosmic ray nuclei,the statistic model of galactic cosmic rays with a reasonable distribution of the SNs in space and time can account for the spectrum of cosmic ray in the energy range of 1012—1020eV quitewell.  相似文献   

9.
EAS MSU array data on the composition of primary cosmic rays at energies above 1017 eV are analyzed. The problem of existence of a cosmic ray component that is not related to the conventional mechanism of formation of galactic cosmic rays is considered and the fraction of γ rays in primary cosmic rays is estimated.  相似文献   

10.
Observations of cosmic rays have been improved at all energies, both in terms of higher statistics and reduced systematics. As a result, the all-particle cosmic ray energy spectrum starts to exhibit more structures than could be seen previously. Most importantly, a second knee in the cosmic ray spectrum—dominated by heavy primaries—is reported just below 1017 eV. The light component, on the other hand, exhibits an ankle-like feature above 1017 eV and starts to dominate the flux at the ankle. The key question at the highest energies is about the origin of the flux suppression observed at energies above 5 · 1019 eV. Is this the long-awaited Greisen-Zatsepin-Kuzmin effect or the exhaustion of sources? The key to answering this question is again given by the still largely unknown mass composition at the highest energies. Data from different observatories do not quite agree, and common efforts have been started to settle that question. The high level of isotropy observed even at the highest energies starts to challenge a proton-dominated composition if extragalactic magnetic fields are on the order of a few nanogauss or more. We shall discuss the experimental and theoretical progress in the field and the prospects for the next decade.  相似文献   

11.
Chemical composition of ultrahigh-energy cosmic rays is estimated through the reliably determined (both experimentally and theoretically) distribution of the number of showers in the galactic latitude. Experimental data at energies of ~1019 eV agree with the theoretical calculations, provided that cosmic rays involve predominantly heavy nuclei. An enhanced flux of cosmic rays from the galactic plane is detected at energies of ~1019 eV.  相似文献   

12.
Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos. The outline of this review is as follows:
  • Introduction
  • Why kilometer-scale detectors?
  • Cosmic neutrinos associated with the highest energy cosmic rays
  • High energy neutrino telescopes: methodologies of neutrino detection
  • High energy neutrino telescopes: status
  •   相似文献   

    13.
    We present a method for determining the energy of the primary particle that generates an extensive air shower (EAS) of comic rays based on measuring the total flux of Cherenkov light from the shower. Applying this method to Cherenkov light measurements at the Yakutsk EAS array has allowed us to construct the cosmic ray energy spectrum in the range 1015 ? 3 × 1019 eV.  相似文献   

    14.
    The CROSS (Cosmic Rays Over Spectrum Steepening) experiment is aimed at direct measurements of masses and energies of primary cosmic ray (PCR) nuclei in the range of 1013 ? 1015 eV near the break in the PCR energy spectrum. The experimental equipment includes a balloon ionization spectrometer consisting of X-ray transition radiation generators interlaid with thin-wall proportional chambers.  相似文献   

    15.
    Recording radio emission from extensive air showers (EASs) is considered now as a new promising method for detecting ultra-high energy (E 0 > 5 × 1016 eV) cosmic rays. The results of calculation of EAS radio emission at frequencies from 40 to 80 MHz in the EAS energy range E 0 = 1014–1017 eV are reported here, and the possibilities of determining EAS parameters from the radio emission lateral distribution are discussed.  相似文献   

    16.
    A cosmic ray jet with primary energy about 1013 eV and its secondary interactions have been investigated in order to make a comparison with the predictions of the alternative variants of the two-centre model of particle emission.  相似文献   

    17.
    Calculations have been carried out to investigate the contribution of an increasing total cross section to steepening of the cosmic ray energy spectrum at very high energies (E ? 1012 eV). Our results suggest that increasing total cross section contributes only a part to the steepening of primary energy spectrum at very high energies even if the composition is pure primary iron flux.  相似文献   

    18.
    The exploring results of the possibility on detecting cosmic ray particles by acoustic way are reported. It shows that the ultrasonic background noise is very complicated and there are some individual and transient ultrasonic signals in the natural wide water. The mechanism producing these signals may be the sound radiation of the microbubbles in water. There is no evidence for the possible correlation between these signals and cosmic ray particles. The threshold energy of acoustic detection of EAS core is above 3﹒1016eV at sealevel and the threshold energy of acoustic detection of the local showers produced by cosmic ray particles is above 1014eV  相似文献   

    19.
    E. Waxman 《Pramana》2004,62(2):483-495
    The existence of cosmic rays of energies exceeding 1020 eV is one of the mysteries of high-energy astrophysics. The spectrum and the high energy to which it extends rule out almost all suggested source models. The challenges posed by observations to models for the origin of high-energy cosmic rays are reviewed, and the implications of recent new experimental results are discussed. Large area high-energy cosmic ray detectors and large volume high-energy neutrino detectors currently under construction may resolve the high-energy cosmic ray puzzle, and shed light on the identity and physics of the most powerful accelerators in the Universe.  相似文献   

    20.

    The inverse problem of cosmic ray transport of ultra-high energy cosmic rays is considered. The source spectrum and composition are derived based on the recent Auger data on energy spectrum, energy dependence of mean logarithm of atomic mass number and its variance. The dependence of results on the extrapolation of observable spectrum beyond energies 1020 eV is investigated.

      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号