首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new liquid emulsion membrane (LEM) process for uranium extraction from either dihydrate 28-30% P2O5 (DH) or hemi-dihydrate 42-45% P2O5 (HDH) wet process phosphoric acid is proposed. In this process, the organic component of the LEM is composed of a synergistic mixture of 0.1M di-2-ethyl hexyl phosphoric acid (DEHPA) and 0.025M trioctyl phosphine oxide (TOPO) with 4% Span 80. The internal or the strip acid phase is composed of 0.5M citric acid. The prepared LEM was proved to be stable in 42-45% P2O5 acid concentration range and can, therefore, be applied to the phosphoric acid produced by the hemi-dihydrate process. After breakdown of the loaded emulsion, the uranyl citrate in the internal strip phase is separated by adding methanol followed by its calcination to the orange oxide. Most of the reagents used are recycled. The proposed process is characterized by simplicity, practically closed operation cycle in addition to lower capital and operating costs.  相似文献   

2.
Summary The solvent extraction of uranium(VI) from concentrated chloride solutions by quaternary salt benzyloctadimethylammonium chloride (BODMAC, R4NCl) in three diluents was studied. The composition of the extracted species was R4N. UO2Cl3and (R4N)2. UO2Cl4in the three diluents investigated. The dependence of the distribution ratios on the concentration of hydrochloric acid, extractant, salting-out agents and temperature was investigated. The extraction efficiency of BODMAC strongly depends on the nature of the diluent. The presence of Mg(SO4)2basically alters the sequence of diluent extraction efficiency.  相似文献   

3.
The extraction of uranium(VI) from nitric acid medium is investigated using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A in dimeric form, H2A2) as extractant either alone or in combination with neutral extractants such as tri-n-butyl phosphate (TBP), trioctyl phosphine oxide (TOPO), and dioctyl sulfoxide (DOSO). The effects of different experimental parameters such as aqueous phase acidity (up to 10 M HNO3), nature of diluent [xylene, carbon tetrachloride (CCl4), n-dodecane and methyl iso-butyl ketone (MIBK)] and of temperature (303–333 K) on the extraction behavior of uranium were investigated. Synergistic extraction of uranium was observed between 0.5 and 6 M HNO3. Use of MIBK as diluent was also studied. Temperature variation studies using PC88A as extractant showed exothermic nature of extraction process. Studies were carried out to optimize the conditions for the recovery of uranium from the raffinate generated during the purification of uranium from nitric acid medium. Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES) and Energy Dispersive X-Ray Fluorescence (EDXRF) techniques were employed for analysis of uranium in equilibrated samples.  相似文献   

4.
Solvent extraction of plutonium(VI) from nitric acid (1 to 5M) into 20% and 30% TBP in dodecane saturated with uranium(VI) (0% to 80%) has been studied. For a particular nitric acid concentration, the distribution coefficient (K d ) is found to decrease with the increase in saturation of organic phase with uranium(VI). At a fixed organic phase the saturationK d increased with increase in nitric acid concentration, however, the magnitude of this increase inK d decreased with the increase in saturation.  相似文献   

5.
The extraction of radio-mercury(II) by PTTDT was investigated as function of diluent, hydrochloric acid concentration, extractant concentration and certain foreign compounds in the aqueous phase. The extraction was found to be quantitative when chloroform was used as diluent and at low HCl or high PTTDT concentrations. Neither the presence of boric acid, nor several metal salts (NaF, CuSO4, ZnSO4 or Na2SO4) had any effect on the E%. The presence of chloride or bromide lowers the E% considerably. A radiochemical procedure was developed to pre-concentrate mercury from artifical sea water using an organic: aqueous phase ratio of 1∶100.  相似文献   

6.
Polarographic determination of uranium (VI) has been studied in the organic extraction phase TBP—diluent along with a selected aprotic solvent (i. e. dimethyl sulfoxide or N,N-dimethylformamide). DMF was found more suitable because it dissolves the organic extraction phase better than DMSO. U (VI) extracted in TBP-kerosene, n-hexane, cyclohexane, n-dodecane, benzene, from nitric acid medium can be determined in an organic solution (e. g. 50% DMF-30% TBP-20% kerosene) where it gives a well defined wave. In the organic solution, nitric acid added and/or extracted from the aqueous phase was found as an excellent supporting electrolyte for uranium determination.  相似文献   

7.
The discontinuous counter current extraction separation of radioactive traces of rare earth elements from each other was successfully performed by using a 96 stage automatic microscale counter current apparatus. Choice of the optimum composition of the aqueous phase (var. HNO3 conc.) and organic phase [di-(2-ethylhexyl) phosphoric acid (HDEHP) in toluene] was made on the basis of the results of liquid-liquid extraction measurements. Providing sufficient content of HDEHP in the organic phase, the presence of macroamounts of uranium(VI) did not interfere with the individual separation of rare earth traces. Consequently, uranium was retained in the organic phase, while separated rare earth traces were redistributed into the aqueous phase. The methods of liquid-liquid extraction and extraction chromatography based on the use of HDEHP were compared. The present results confirm that the liquid-liquid extraction has the advantage to be selective for the separation of rare earth traces from each other and from the macroamount of uranium(VI).  相似文献   

8.
Solvent extractions of thorium(IV) and uranium(VI) by a commercially available chelating extractant LIX-26 (an alkylated 8-hydroxyquinoline) or 8-hydroxyquinoline, benzoic or salicylic acid, dipentyl sulphoxide (DPSO) and their mixtures with butanol as modifier in benzene/methylisobutyl ketone (MIBK) as the diluent have been studied. Extraction of uranium(VI) by 10% LIX-26 and 10% butanol in benzene becomes quantitative at pH 5.0. The pH 0.5 values for the extraction of thorium(IV) and uranium(VI) are 4.95 and 3.35, respectively. Quantitative extraction of thorium(IV) by the mixture of 0.1 M oxine and 0.1 M salicylic acid in methylisobutyl ketone was observed at pH 5.0. The influence of concentration of various anions on the extraction of Th4+ by mixtures of LIX-26 and benzoic acid has been studied. Studies on extraction of thorium(IV) and uranium(VI) by mixtures of LIX-26 (HQ) and DPSO show that the extracted species are possibly of the type [ThQ2/DPSO/2/SCN/2] and [UO2Q2/DPSO/], respectively.  相似文献   

9.
The present scientific study on uranium(VI) solvent extraction and vanadium(V) separation from sulfate solutions using Alamine 336 as an extractant diluted in kerosene was established. The preliminary experiments indicating the uranium extraction process will follow the solvation as well as ion-exchange mechanisms. In the present acid region (0.1–1.0 mol dm−3 H2SO4) it showing the ion-exchange type mechanism. Time (1–120 min) and temperature (25–55 °C) not influencing the present extraction system. Other experimental parameters like loading capacity of Alamine 336, stripping of uranium from loaded organic phase, recycling of Alamine 336 and separation of uranium(VI)/vanadium(V) was studied.  相似文献   

10.
Extraction behavior of 1 × 10−2–0.1 M U(VI) from aqueous phases containing 0.86 M Th(IV) at 4 M HNO3 in 1.1 M tributyl phosphate (TBP) and 1.1 M N,N-dihexyl octanamide (DHOA) solutions in different diluents viz. n-dodecane, 10% 1-octanol + n-dodecane, and decahydronaphthalene (decalin) was studied. Third-phase formation was observed in both the extractants using n-dodecane as diluent. There was a gradual decrease in Th(IV) concentration in the third-phase (heavy organic phase, HOP) with increased aqueous U(VI) concentration [0.71 M (no U(VI))–0.61 M (0.1 M U(VI)) for TBP; 0.27 M (no U(VI))–0.22 M (0.1 M U(VI)) for DHOA]. The HOP volume in case of DHOA was ~2.2 times of that of TBP. Uranium concentration in HOP increased with its initial concentration in the aqueous phase [from 1.8 × 10−2 M (0.01 M U(VI))–0.162 M (0.1 M U(VI)) for TBP; from 1.4 × 10−2 M (0.01 M U(VI))–0.14 M (0.1 M U(VI)) for DHOA] suggesting that Th(IV) was being replaced by U(VI). An empirical correlation was developed for predicting the concentrations of uranium and thorium in HOP for both the extractants. No third-phase appeared during the extraction of uranium and thorium from the aqueous phases employing 10% 1-octanol + n-dodecane, or decalin as diluents, and therefore, were better choices as diluent for alleviating the third-phase formation during the reprocessing of spent thorium based fuels, and for the recovery of thorium from high-level waste solutions.  相似文献   

11.
Summary A systematic study on the extraction of U(VI) from nitric acid medium by tri-n-butylphosphate (TBP) dissolved in a non-traditional diluent namely 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) ionic liquid (IL) is reported. The results are compared with those obtained using TBP/n-dodecane (DD). The distribution ratio for the extraction of U(VI) from nitric acid by 1.1M TBP/bmimPF6 increases with increasing nitric acid concentration. The U(VI) distribution ratios are comparable in the nitric acid concentration range of 0.01M to 4M, to the ratios measured using 1.1M TBP/DD. In contrast to the extraction behavior of TBP/DD, the D values continued to increase with the increase in the concentration of nitric acid above 4.0M. The stoichiometry of uranyl solvate extracted by 1.1M TBP/IL is similar to that of TBP/DD system, wherein two molecules of TBP are associated with one molecule of uranyl nitrate in the organic phase. Ionic liquid alone also extracts uranium from nitric acid, albeit to a small extent. The exothermic enthalpy accompanying the extraction of U(VI) in TBP/bmimPF6 decreases with increasing nitric acid and with TBP concentrations.  相似文献   

12.
Liquid-liquid extraction of uranium(VI) (UO2 2+) from aqueous acidic (HCl and HNO3) solutions into a co-existing organic phase containing Alamine 308 (triisooctyl amine), TBP (tri-n-butyl phosphate) or CYANEX 302 (bis(2,4,4-trimethylpentyl) monothiophosphinic acid) and diluent (toluene) was studied at isothermal conditions (298.2 K) at aqueous phase acidity varying in the range 0.5-6 mol/dm3. All solvent systems exhibit a maximum distribution ratio restricted in the acidity range 3-4 mol/dm3. An obvious difference in extraction behavior through amine system has been observed for two acids, HCl and HNO3, distinguishing the divergent interactions attributed to the different mechanism of complexation depending on the acidic medium. The high degree of separation of UO2 2+ from HNO3 solution is feasible through a complex formation with extractants ranging in the order CYANEX 302 > TBP > Alamine 308. The results were correlated using various versions of the mass action law, i.e., a chemodel approach and a modified version of the Langmuir equilibrium model comprising the formation of one or at least two U(VI)-extractant aggregated structures.  相似文献   

13.
Extraction of uranium(VI), thorium(IV) from nitric acid has been studied with N-octylcaprolactam and N-(2-ethyl)hexylcaprolactam. Distribution coefficients of U(VI), Th(IV) and HNO3 as a function of aqueous NHO3 concentration, extractant concentration and temperature have been studied. The compositions of extracted species, thermodynamic parameters of extraction have been evaluated. Third phase formation in extraction of U(VI) has been studied. Back extraction behavior of U(VI) and Th(IV) from the organic phase has also been tested. The results obtained are compared with those obtained by using TBP under the same experimental conditions.  相似文献   

14.
A method for detecting and quantifying uranium(VI) levels on building materials that include concrete, Plexiglas, glass and steel surfaces is presented. Uranium(VI) was extracted from building material surfaces using a pH 2.2 buffer rinse and, subsequently complexed by an organic chelating agent, arsenazo III. The application of a uranium-chelating molecule, arsenazo III, allows for concentration enhancement using C18 solid phase extraction and colorimetric detection of the uranium complex using ultraviolet-visible spectroscopy at 654 nm. The method has a detection limit (based on 3σ) of 40 ng/L (5 ng/cm2) and an overall extraction efficiency greater than 80% for each surface type (concrete, Plexiglas, glass, steel). Methods to prevent interference by metal ions commonly found on building materials are discussed.  相似文献   

15.
The extraction of U(VI) by mixtures of HTTA and TBP from aqueous thiocyanate medium has been studied. From the data obtained it was observed that the predominant uranium species extracted, causing synergic enhancement in the extraction of U(VI), is UO2(SCN)TTA · 2TBP when benzene and cyclohexane are used as diluents, and that at a very low concentration of TBP the contribution of additional species, viz. UO2(TTA)2 · TBP becomes significant. With chloroform as diluent, however, both of these species are contributing to the synergic enhancement. The extraction of a quaternary uranium species, UO2(SCN)TTA · 2TBP, involving the participation of the aqueous anion is thus established. Equilibrium constants for the various extraction equilibria involved are calculated.  相似文献   

16.
HNO3 is extracted in significant quantities by uranyl nitrate solvates with different extractants: TBP (tributyl phosphate), TOPO (trioctyl phosphine oxide) and TDA (tetradecyl ammonium). The effect of diluent nature is not observed on extracting HNO3 and TBP saturated by uranium at equilibrium with its salt using the diluents (CCl4, C6H5Cl, C12H26, CHCl3) which are less polar than UO2(NO3)2(TBP)2. HNO3 occurs in organic phase as undissociated form and its state is similar to pure anhydrous HNO3. Solvates of TBP and TDA with uranyl nitrate dissolve HNO3 without displacement of uranium from organic phase.  相似文献   

17.
Uranium extraction using DEHCNPB (butyl-1-[N,N-bis(2-ethylhexyl)carbamoyl]nonyl phosphonic acid, a bifunctional cationic extractant) has been studied to better understand mechanism differences depending on the original acidic solution (phosphoric or sulfuric). Solvent extraction batch experiments were carried out and the organic phases were probed using 31P-NMR. This technique enabled to demonstrate that phosphoric acid is poorly extracted by DEHCNPB ([H3PO4]org < 2mM), using direct quantification in the organic phase by 31P-NMR spectra integration. Moreover, in the presence of uranium in the initial phosphoric acid solution, uranyl extraction by DEHCNPB competes with H3PO4 extraction.Average stoichiometries of U(VI)-DEHCNPB complexes in organic phases were also determined using slope analysis on uranium distribution data. Uranium seems to be extracted from a phosphoric medium by two extractant molecules, whereas more than three DEHCNPB on average would be necessary to extract uranium from a sulfuric medium. Thus, uranium is extracted according to different mechanisms depending on the nature of the initial solution.  相似文献   

18.
This work aims to the extraction of the priority pollutant 4-nitrophenol (4-NP) from water by emulsion liquid membrane (ELM). Liquid membrane consists of a diluent (hexane) and a surfactant (Span 80). Sodium carbonate solution was used as internal aqueous phase. Effects of important experimental conditions governing the stability of the W/O emulsion were investigated. Influence of operating parameters that affects the permeation of 4-NP such as surfactant concentration, emulsification time, sulfuric acid concentration in external phase, acid type in external phase, internal phase concentration, type of internal phase, stirring speed, volume ratio of internal phase to membrane phase, treatment ratio, 4-NP initial concentration, and diluent type was examined. This study also evaluated the effect of Na2CO3 concentration in the internal aqueous phase on the stripping of 4-NP. Additionally, the reuse of the recovered membrane was studied. Under most favorable conditions, practically all the 4-NP and aniline (AN) molecules present in the feed phase were extracted. The recovery of the membrane phase was total and the extraction of 4-NP was not decreased. The ELM treatment process represents a very interesting advanced separation process for the removal of 4-NP and AN from aqueous solutions.  相似文献   

19.
A study on extraction of uranium(VI) from sulfuric acid media by the primary amine N1923 in chloroform is described. Extraction coefficients of uranium(VI) as a function of aqueous H2SO4 concentration, extractant concentration and temperature have been studied. From the data, the compositions of extracted species, equilibrium constants and enthalpies of extraction reaction have been evaluated. A new extraction mechanism of amine has been suggested, that is the formation of reversed micelle as a result of the aggregation of ammonium salt in the organic phase of the extraction. This assumption may be used for interpreting extraction data satisfactorily, which can not be explained by the slope analysis method.  相似文献   

20.
Summary Mg(OH)2 was identified as a component of Sorel’s cement being a very strong sorbent for uranium. Sorel’s cement is a mixture of MgO, MgCl2 and water. The optimal conditions for the adsorption of U(VI) was studied by the batch method. A contact time of 2 hours was found to be optimum. Maximum U(VI) uptake was observed in a pH range of 5.5-6.5 with a sorption constant of Kads = 0.9 h-1 at initial concentration of 20 ppm. Polypropylene columns filled with 2 g of Sorel’s cement at a mesh size of 35 were used for the preconcentration of uranium by passing 8 l of water containing 10 ppb U(VI). A flow rate of 0.25 ml/min and a bed height of 5 cm were found to be the optimum for the U(VI) separation. A 5 wt% triphenylphosphine oxide solution in toluene was used as an organic solvent for the separation of uranium from interfering elements such as iron(III) and thorium(IV), prior to spectrophotometric analysis. The determination of U(VI) was accomplished by adding Arsenazo III as a coloring reagent to the solution and using a UV-160A spectrophotometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号