首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extremely sensitive, reliable and simple procedure is described for the determination of physiological palladium, platinum and gold in human urine. The urine samples were adjusted to pH 4 (Pd, Au) or pH 5 (Pt), followed by conversion of the analytes to their pyrrolidinedithiocarbamate complexes. These complexes were separated from the matrix by liquid-liquid extraction into 4-methyl-2-pentanone resulting in a 25-fold enrichment. Determination was by electrothermal atomic absorption spectrometry (ET-AAS) using longitudinal inverse alternating current Zeeman-effect background correction. The limits of detection calculated from three standard deviations of the blank values were 20 ng l−1 for Pd and Au and 70 ng l−1 Pt. Within-day precision (n = 10, 5 μg l−1) ranged 5.2%–7.7%. The procedure is successfully applied to determine urinary palladium, platinum and gold in nine unexposed persons. Palladium levels in urine ranged < 20–80 ng l−1 (arithmetical MEAN=38.7 ng l−1), while gold levels ranged < 20–130 ng l−1 (36.0 ng l−1). Physiological platinum levels in urine were all < 70 ng l−1. The accuracy of the procedure was checked by analyzing a series of urine samples by a second independent method (magnetic sector field inductively-coupled plasma-mass spectrometry) in combination with UV photolysis.  相似文献   

2.
A simple and rapid flow injection (FI) method is reported for the determination of phosphate (as molybdate reactive P) in freshwaters based on luminol chemiluminescence (CL) detection. The molybdophosphoric heteropoly acid formed by phosphate and ammonium molybdate in acidic conditions generated chemiluminescence emission via the oxidation of luminol. The detection limit (3× standard deviation of blank) was 0.03 μg P l−1 (1.0 nM), with a sample throughput of 180 h−1. The calibration graph was linear over the range 0.032–3.26 μg P l−1 (r2=0.9880) with relative standard deviations (n=4) in the range 1.2–4.7%. Interfering cations (Ca(II), Mg(II), Ni(II), Zn(II), Cu(II), Co(II), Fe(II) and Fe(III)) were removed by passing the sample through an in-line iminodiacetate chelating column. Silicate interference (at 5 mg Si l−1) was effectively masked by the addition of tartaric acid and other common anions (Cl, SO42−, HCO3, NO3 and NO2) did not interfere at their maximum admissible concentrations in freshwaters. The method was applied to freshwater samples and the results (26.1±1.1–62.0±0.4 μg P l−1) were not significantly different (P=0.05) from results obtained using a segmented flow analyser method with spectrophotometric detection (24.4±4.45–84.0±16.0 μg P l−1).  相似文献   

3.
A new flow-through fluoroimmunosensor for atrazine determination based on the use of protein A immobilized on controlled pore glass as immunoreactor is reported. The support, placed in the optical path of the flow cell, allows the ‘in situ’ quantification of atrazine by on-line antigen–antibody binding upon successive injections of both substances. The immunosensor has a detection limit of 2.1 μg l−1, a sample speed of about 10 samples per hour, and provides high reproducibility both within-day (3.2% for 5 μg l−1 and 2.2% for 30 μg l−1) and between days. The optimum working concentration range was 2.1–50 μg l−1. Possible interferences of other triazines like simazine, desethylatrazine (DEA) and desisopropylatrazine (DIA) were evaluated. Simazine and DIA were not cross-reactive; however, the cross-reactivity for DEA was CR=7.7%. The proposed immunosensor was successfully applied to the determination of atrazine in drinking water and citrus fruits.  相似文献   

4.
A field oriented and economical method of coprecipitation of trace elements like Al, Au, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Pd, Ti, V, W, Zn and REE has been developed. A novel reductant D-glucose, reduces KMnO4 in solution to form a precipitate of MnO2. Two liters of clear natural water sample is adjusted to pH 3.5–4.0, and is treated with 10 ml of 1% KMnO4 and 20 ml of 0.1% D-glucose. The sample is heated at a temperature of 75–80 °C, MnO2 is formed which coprecipitates the above trace elements. The precipitate is separated by filtration, dissolved in 2 ml of 50% HCl and 2 ml of 30% H2O2 and diluted to 25 ml for analysis using AAS and ICP-AES. The recoveries were found to be 96–105%. The preconcentration factor is 80. Limits of determination by the proposed method in natural waters are 1 μg l−1 for Al, Cd, Mo, V, W, Ti and Zn, 5 μg l−1 for Au, Bi, Co, Cu, Fe, Ni, Pb and Pd and 8 μg l−1 for REE. The RSD of the present procedure (n=5) is 8% at 5 μg l−1 level. Twenty water samples can be analyzed by an analyst in an 8-h day.  相似文献   

5.
A reversed flow injection colorimetric procedure for determining iron(III) at the μg level was proposed. It is based on the reaction between iron(III) with norfloxacin (NRF) in 0.07 mol l−1 ammonium sulfate solution, resulting in an intense yellow complex with a suitable absorption at 435 nm. Optimum conditions for determining iron(III) were investigated by univariate method. The method involved injection of a 150 μl of 0.04% w/v colorimetric reagent solution into a merged streams of sample and/or standard solution containing iron(III) and 0.07 mol l−1 ammonium sulfate in sulfuric acid (pH 3.5) solution which was then passed through a single bead string reactor. Subsequently the absorbance as peak height was monitored at 435 nm. Beer's law obeyed over the range of 0.2–1.4 μg ml−1 iron(III). The method has been applied to the determination of total iron in water samples digested with HNO3–H2O2 (1:9 v/v). Detection limit (3σ) was 0.01 μg ml−1 the sample through of 86 h−1 and the coefficient of variation of 1.77% (n=12) for 1 μg ml−1 Fe(III) were achieved with the recovery of the spiked Fe(III) of 92.6–99.8%.  相似文献   

6.
Matoso E  Kubota LT  Cadore S 《Talanta》2003,60(6):1105-1111
An analytical method using silica gel chemically modified with zirconium (IV) phosphate for preconcentration of lead and copper, in a column system, and their sequential determination by flame atomic absorption spectrometry (FAAS), was developed. Sample solutions are passed through a glass column packed with 100 mg of the sorbent material, at pH 4.5, and lead and copper are eluted with 1.0 mol l−1 HNO3 at a flow rate of 2.0 ml min−1. The extraction of copper is affected by Fe(II), Mn(II), Zn(II), Ni(II) and Co(II) while only Fe(II) interferes in the lead determination. These interferences may be overcome with an appropriate addition of a KI or NaF solution. An enrichment factor of 30 was obtained for both metals. While the limits of detection (3σ) were 6.1 and 1.1 μg l−1, for Pb and Cu, respectively, the limits of determination were 16.7 and 3.3 μg l−1. The precision expressed as relative standard deviation (R.S.D.) obtained for 3.3 μg l−1 of Cu and 16.7 μg l−1 of Pb were 4.3 and 4.7%, respectively, calculated from ten measurements. The proposed method was evaluated with reference material and was applied for the determination of lead and copper in industrial and river waters.  相似文献   

7.
A procedure for separation and preconcentration of trace amounts of copper in natural water samples, has been proposed. It is based on the adsorption of copper(II) ions onto a column of Amberlite XAD-2 resin loaded with calmagite reagent. This way amounts of copper within the range from 0.0125 to 25.0 μg, in a sample volume of 25 to 250 ml, and pH from 3.7 to 10.0 was concentrated as calmagite complex in a column of 0.50 g of Amberlite XAD-2 resin. Copper (II) ion was desorpted by using 5.0 ml of 2 mol l−1 hydrochloric acid. Detection and determination limits of the proposed procedure for 250 ml sample volume were 0.15 and 0.50 μg l−1, respectively. Selectivity test showed that (in the indicated concentration), calcium(II) (500 mg l−1), magnesium(II) (500 mg l−1), strontium(II) (50 mg l−1), iron(III) (10 mg l−1), nickel(II) (10 mg l−1), cobalt(II) (10 mg l−1), cadmium(II) (10 mg l−1) and lead(II) (10 mg l−1) did not interfere in copper determination by this procedure. Precision of the method, evaluated as the relative standard deviation by analyzing a series of seven replicates, was 2.42% for a copper mass of 1.0 μg in a sample volume of 100 ml. The accuracy of the proposed procedure was evaluated by means of copper determination in reference biological samples. The achieved results were in good agreement with certified values. The extractor system had a sorption capacity of 1.59 μmol of copper per gram of resin loaded with calmagite. The proposed procedure was applied for copper determination by FAAS in natural water samples. Samples were collected from different places of Salvador city, Bahia, Brazil. The achieved recovery, measured by the standard addition technique, showed that the proposed procedure had good accuracy. A good enrichment factor (50×) and simplicity are the main advantages in this analytical procedure.  相似文献   

8.
Methods for the determination of aluminium and manganese in human scalp hair samples by electrothermal atomic absorption spectrometry using the slurry sampling technique were developed. Palladium and magnesium nitrate were used as chemical modifiers. Hair samples were pulverized using a zirconia vibrational mill ball, and were prepared as aqueous slurries. Determinations can be performed in the linear ranges of 1.9–150 μg l−1 Al3+ and 0.03–10.0 μg l−1 Mn2+. Limits of detection of 0.9 mg kg−1 and 27.6 μg kg−1 were obtained for aluminium and manganese, respectively. The analytical recoveries were between 99.6 and 101.8% for aluminium and in the 98.3–101.3% range for manganese. The repeatability of the methods (n=11), slurry preparation procedure and ETAAS measurement, was 16.0 and 7.9% for aluminium and manganese, respectively. The methods were finally applied to the aluminium and manganese determination in 25 scalp hair samples from healthy adults. The levels for aluminium were between 8.21 and 74.08 mg kg−1, while concentrations between 0.03 and 1.20 mg kg−1 were found for manganese.  相似文献   

9.
A HPLC method with automated column switching and UV-diode array detection is described for the simultaneous determination of Vitamin D3 and 25-hydroxyvitamin D3 (25-OH-D3) in a sample of human plasma. The system uses a BioTrap precolumn for the on-line sample cleanup. A sample of 1 ml of human plasma was treated with 2 ml of a mixture of ethanol–acetonitrile (2:1 (v/v)). Following centrifugation, the supernatant was evaporated to dryness under a stream of dry and pure nitrogen. The residue was reconstituted in 250 μL of a solution of methanol 5 mmol l−1 phosphate buffer, pH 6.5 (4:1 (v/v)), and a 200 μl aliquot of this solution was injected onto the BioTrap precolumn. After washing during 5 min with a mobile phase constituted by a solution of 6% acetonitrile in 5 mmol l−1 phosphate buffer, pH 6.5 (extraction mobile phase), the retained analytes were then transferred to the analytical column in the backflush mode. The analytical separation was then performed by reverse-phase chromatography in the gradient elution mode with the solvents A and B (Solvent A: acetonitrile–phosphate buffer 5 mmol l−1, pH 6.5; 20:80 (v/v); solvent B: methanol–acetonitrile–tetrahydrofuran, 65:20:15 (v/v)). The compounds of interest were detected at 265 nm. The method was linear in the range 3.0–32.0 ng ml−1 with a limit of quantification of 3.0 ng ml−1. Quantitative recoveries from spiked plasma samples were between 91.0 and 98.0%. In all cases, the coefficient of variation (CV) of the intra-day and inter-day-assay precision was ≤2.80%. The proposed method permitted the simultaneous determination of Vitamin D3 and 25-OH-D3 in 16 min, with an adequate precision and sensitivity. However, the overlap of the sample cleanup step with the analysis increases the sampling frequency to five samples h−1. The method was successfully applied for the determination of Vitamin D3 and 25-OH-D3 in plasma from 46 female volunteers, ranging from 50 to 94 years old. Vitamin D3 and 25-OH-D3 concentrations in plasma were found from 4.30–40.70 ng ml−1 (19.74 ± 9.48 ng ml−1) and 3.1–36.52 ng ml−1 (7.13 ± 7.80 ng ml−1), respectively. These results were in good agreement with data published by other authors.  相似文献   

10.
An analytical method for analysing acrylamide in coffee was validated. The analysis of prepared coffee includes a comprehensive clean-up using multimode solid-phase extraction (SPE) by automatic SPE equipment and detection by liquid chromatography tandem mass spectrometry using electrospray in the positive mode. The recoveries of acrylamide in ready-to-drink coffee spiked with 5 and 10 μg l−1 were 96±14% and 100±8%, respectively. Within laboratory reproducibility for the same spiking levels were 14% and 9%, respectively. Coffee samples (n = 25) prepared twice by coffee machines and twice by a French Press Cafetière coffee maker contained 8±3 μg l−1 and 9±3 μg l−1 acrylamide. Five ready-to-drink instant coffee prepared twice contained 8±2 μg l−1. Hence, the results do not show significant differences in the acrylamide contents in ready-to-drink coffee prepared by coffee machine, French Press or from instant coffee. Medium roasted coffee contained more acrylamide (10 μg l−1) than dark roasted coffee (5 μg l−1). Males aged 35–45 years, drinking on average 1.1 l coffee per day are exposed to the highest doses of acrylamide from coffee. The dietary intake of acrylamide from coffee comprises, on an average, 10 μg day−1 for males and 9 μg day−1 for females aged 35–45 years. Probabilistic modelling of the exposure of Danish consumers (all adults) to acrylamide from coffee shows a mean exposure of 6.5 μg day−1 and a 95 percentile of 18 μg day−1.  相似文献   

11.
A method for the determination of gentamicin residues in hospital wastewater has been developed using kanamycin as a surrogate standard. The method consists of solid-phase extraction (SPE) and detection by ion-pair chromatography with electrospray tandem mass spectrometry (LC–ES-tandem MS). The SPE was performed on a weak cation exchanger. Filtration should be avoided in the sample preparation, otherwise a significant loss of gentamicin occurs. Chromatographic separation on a C18-column was achieved using a ternary eluent containing methanol, water and 20 mmol l−1 heptafluorobutyric acid solution. Mean relative recoveries of the analytes in hospital wastewater varied between 107 and 111%. The limit of quantification (LOQ) was 0.20 μg l−1 in hospital wastewater. Gentamicin was found in native hospital wastewater in a concentration range between 0.4 and 7.6 μg l−1.  相似文献   

12.
An electrochemiluminescence (ECL) sensor with good long-term stability and fast response time has been developed. The sensor was based on the immobilization of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) into the Eastman-AQ55D–silica composite thin films on a glassy carbon electrode. The ECL and electrochemistry of Ru(bpy)32+ immobilized in the composite thin films have been investigated, and the modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and chlorpromazine (CPZ) in a flow injection analysis system and showed high sensitivity. Because of the strong electrostatic interaction and low hydrophobicity of Eastman-AQ55D, the sensor showed no loss of response over 2 months of dry storage. In use, the electrode showed only a 5% decrease in response over 100 potential cycles. The detection limit was 1 μmol l−1 for oxalate and 0.1 μmol l−1 for both TPA and CPZ (S/N=3), respectively. The linear range extended from 50 μmol l−1 to 5 mmol l−1 for oxalate, from 20 μmol l−1 to 1 mmol l−1 for TPA, and from 1 μmol l−1 to 200 μmol l−1 for CPZ.  相似文献   

13.
An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l−1 HCl for Se(IV) and 12 mol l−1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0–120 and 0–100 μg l−1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l−1 for Se(IV) and 1.5 μg l−1 for Se(VI). The precision (about 2.0–2.5% RSD) and recoveries (96–98% for Se(IV) and 94–98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.  相似文献   

14.
A continuous flow system for the determination of lead in home made spirituous beverages was developed. The determination was based on the formation of a neutral chelate of the element with ammonium pyrrolidine dithiocarbamate, its adsorption onto a minicolumn packed with sodium faujasite type Y synthetic zeolite, followed by elution with methyl isobutyl ketone and determination by flame atomic absorption spectrometry. Ethanol and copper interfere strongly in the determination and therefore, must be separated prior to the analysis. Copper is removed by precipitation with rubeanic acid, while ethanol is eliminated by rotaevaporation. Sample solutions containing Pb2+ in the concentration range from 5 to 120 μg l−1 at pH 2.5 could be analyzed, by using a preconcentration time of 3 min. Preconcentration factors from 80 to 140 were achieved for a sample volume of 6 ml and the detection limit varied from 1.4 to 3.5 μg l−1, depending on the matrix composition. The relative standard deviations for 60 μg l−1 Pb was 3.2% (n = 10) and the recovery of spikes (20, 40, 60 and 80 μg l−1) added to the samples was estimated within 92–105% range, suggesting that lead can be quantitatively determined in such samples. Determining lead in several samples by an alternative technique further checked the accuracy. Finally, the concentrations of Pb2+ determined in 28 samples of Venezuelan spirituous beverages were in 12.6–370.0 μg l−1 range, depending on the fermenting material based on different mixtures of agave, raw sugar cane and white sugar.  相似文献   

15.
Flow injection (FI) and sequential injection (SI) systems with anodic stripping voltammetric detection have been exploited for simultaneous determination of some metals. A pre-plated mercury film on a glassy carbon disc electrode was used as a working electrode in both systems. The same film can be repeatedly applied for at least 50 analysis cycles, thus reducing the mercury consumption and waste. A single line FI voltammetric system using an acetate buffer as a carrier and an electrolyte solution was employed. An injected standard/sample zone was mixed with the buffer in a mixing coil before entering a flow cell. Metal ions were deposited on the working electrode by applying a potential of −1.1 V vs Ag/AgCl reference electrode. The stripping was performed by anodically scanning potential of working electrode to +0.25 V, resulting a voltammogram. Effects of acetate buffer concentration, flow rate and sample volume were investigated. Under the selected condition, detection limits of 1 μg l−1 for Cd(II), 18 μg l−1 for Cu(II), 2 μg l−1 for Pb(II) and 17 μg l−1 for Zn(II) with precisions of 2–5% (n=11) were obtained. The SI voltammetric system was similar to the FI system and using an acetate buffer as a carrier solution. The SI system was operated by a PC via in-house written software and employing an autotitrator as a syringe pump. Standard/sample was aspirated and the zone was then sent to a flow cell for measurement. Detection limits for Cd(II), Cu(II), Pb(II) and Zn(II) were 6, 3, 10 and 470 μg l−1, respectively. Applications to water samples were demonstrated. A homemade UV-digester was used for removing organic matters in the wastewater samples prior to analysis by the proposed voltammetric systems.  相似文献   

16.
Matos RC  Coelho EO  Souza CF  Guedes FA  Matos MA 《Talanta》2006,69(5):1208-1214
The importance of atmospheric hydrogen peroxide (H2O2) in the oxidation of SO2 and other compounds has been well established. A spectrophotometric method for the determination of hydrogen peroxide in rainwater is proposed. This method is based on selective oxidation of hydrogen peroxide using an on-line tubular reactor containing peroxidase immobilized on Amberlite IRA-743 resin. The hydrogen peroxide in the presence of phenol, 4-aminoantipyrine and peroxidase, produces a red compound (λ = 505 nm). Beer's law is obeyed in a concentration range of 1–100 μmol l−1 hydrogen peroxide with an excellent correlation coefficient (r = 0.9991), at pH 7.0, with a relative standard deviation (R.S.D.) <2%. The detection limit of the method is 0.7 μmol l−1 (4.8 ng of H2O2 in a 200 μl sample). Measurements of hydrogen peroxide in rain samples were carried out over the period from November 2003 to January 2005, in the central area of the Juiz de Fora city, Brazil. The concentration of H2O2 varied from values lower than the detection limit to 92.5 μmol l−1. The effects of the presence of nonseasalt (NSS) SO42−, NO3 and H+ in the concentration of hydrogen peroxide in the rainwater had been evaluated. The average concentrations of H2O2, NO3, NSS SO42− and SO42− are 23.4, 18.9, 7.9 and 10.3 μmol l−1, respectively. The pH values for 82% of the collected samples are greater than 5.0. The spectrophotometeric method developed in this work that uses enzyme immobilized on the resin ion-exchange compared with the amperometric method did not present any significant difference in the results.  相似文献   

17.
A flow injection on-line sorption preconcentration electrothermal atomic absorption spectrometric system for fully automatic determination of lead in water was investigated. The discrete non-flow-through nature of ETAAS, the limited capacity of the graphite tube and the relatively large volume of the knotted reactor (KR) are obstacles to overcome for the on-line coupling of the KR sorption preconcentration system with ETAAS. A new FI manifold has been developed with the aim of reducing the eluate volume and minimizing dispersion. The lead diethyldithiocarbamate complex was adsorbed on the inner walls of a knotted reactor made of PTFE tubing (100 cm long, 0.5 mm i.d.). After that, an air flow was introduced to remove the residual solution from the KR and the eluate delivery tube, then the adsorbed analyte chelate was quantitatively eluted into a delivery tube with 50 μl of ethanol. An air flow was used to propel the eluent from the eluent loop through the reactor and to introduce all the ethanolic eluate onto the platform of the transversely heated graphite tube atomizer, which was preheated to 80°C. With the use of the new FI manifold, the consumption of eluent was greatly reduced and dispersion was minimized. The adsorption efficiency was 58%, and the enhancement factor was 142 in the concentration range 0.01–0.05 μg l−1 Pb at a sample loading rate of 6.8 ml min−1 with 60 s preconcentration time. For the range 0.1–2.0 μg l−1 of Pb a loading rate of 3.0 ml min−1 and 30 s preconcentration time were chosen, resulting in an adsorption efficiency of 42% and an enhancement factor of 21, respectively. A detection limit (3σ) of 2.2 ng l−1 of lead was obtained using a sample loading rate of 6.8 ml min−1 and 60 s preconcentration. The relative standard deviation of the entire procedure was 4.9% at the 0.01 μg l−1 Pb level with a loading rate of 6.8 ml min−1 and 60 s preconcentration, and 2.9% at the 0.5 μg l−1 Pb level with a 3.0 ml min−1 loading rate and 30 s preconcentration. Efficient washing of the matrix from the reactor was critical, requiring the use of the standard addition method for seawater samples. The analytical results obtained for seawater and river water standard reference materials were in good agreement with the certified values.  相似文献   

18.
An analytical method for separation and pre-concentration of lead in seawater for determination by inductively coupled plasma optical emission spectrometry has been investigated. Lead was retained in the solid phase (0.5 g) composed of co-precipitated naphthalene and alizarin red. The solid phase quantitatively sorbs Pb(II) at pH 8–9, and the metal was eluted using 5.0 ml of 2 mol l−1 nitric acid. The effect of NaCl, KCl, BaCl2, CaCl2, Na2SO4, MgCl2 and Na3PO4 on the sorption of Pb(II) in the solid phase was studied. A set of solutions containing varying amounts of electrolytes (0.5; 1.0; 3.0 and 5.0% m/v) with Pb (50 μg) was prepared and the recommended procedure applied. The Na3PO4 was found to interfere; the other electrolytes did not interfere up to 5% m/v. A pre-concentration factor of 40 was obtained in this analytical procedure. The limit of detection and limit of quantification for Pb(II) were 53 and 176 μg l−1, respectively. Lead was determined in seawater samples collected in Salvador city, Bahia, Brazil. The precision, expressed as R.S.D., was 1.8–4.6%, and the recovery of lead added to seawater samples was 95–97%.  相似文献   

19.
Burguera JL  Burguera M  Rondón C 《Talanta》2002,58(6):1167-1175
An on-line flow injection (FI) precipitation–dissolution system with microwave-assisted sample digestion has been developed for the electrothermal atomic absorption spectrometry (ETAAS) determination of trace or ultratrace amounts of molybdenum in human blood serum and whole blood samples. After the exposure of the sample to microwave radiation, the on-line precipitation of molybdenum was achieved by the merging-zone of a 0.5-ml plug of sample with a plug of potassium ferrocyanide, which were carried downstream with a solution of 0.5 mol l−1 of HNO3. The interfering effects of iron and copper were minimized by the introduction of a flow of a 5% (w/v) sodium potassium tartrate (for iron) and 2% (w/v) of thiourea (for copper and zinc) in a 5% (v/v) ammonia and 2% (v/v) ammonium chloride solution previous to the precipitation reaction. The reddish-brown precipitate of molybdenyl ferrocyanide was collected on the walls of a knotted reactor. The precipitate was dissolved with the introduction of 1 ml of a 3.0 mol l−1 NaOH solution and the best performance in terms of detection limit and precision was achieved when a sub-sample of 140 μl was collected in a capillary of a sampling arm assembly, to introduce 20 μl volumes into the atomizer by means of positive displacement with air through a time-based injector. A detection limit (3σ) of 0.1 μg Mo l−1 using an aqueous standard solution was obtained. The method is quantitative and is applied over the range 0.2–20.0 μg Mo l−1. The precision of the method evaluated by ten replicate analyses of aqueous standard solutions containing 0.5 and 1.0 μg Mo l−1 was 2.8 and 3.1% (relative standard deviation, RSD) (for n=5), respectively. Whereas, the precision evaluated by five replicate analysis of a serum and a whole blood sample were 3.3 and 3.8% RSD. An enrichment factor of ca. 3.5 was achieved with the introduction of 0.5 ml aqueous standard solutions at a sample flow rate of 1.0 ml min−1. Recoveries of spiked molybdenum in blood serum and whole blood were in the ranges 96–102 and 94–98%, respectively. The results obtained for two human whole blood certified reference materials were in good agreement with the indicative values.  相似文献   

20.
A simple GF-AAS method for speciation analysis of chromium in mineral waters and salinas was developed. Cr(VI) species were separated from Cr(III) by solid-phase extraction with APDC (ammonium pyrrolidinedithiocarbamate). The APDC complexes were formed in the sample solution under proper conditions, adsorbed on Diaion HP-2MG resin and the resin was separated from the sample. After elution with concentrated nitric acid Cr(VI) was determined by GF-AAS. Total chromium was determined by GF-AAS directly in the sample and Cr(III) concentration was calculated as the difference between those results.

The detection limit of the method defined as 3 s of background variation was 0.03 μg l−1 for Cr(VI) and 0.3 μg l−1 for total chromium. RSD for Cr(VI) determination at the concentration of 0.14 μg l−1 was 9%, and for total chromium at the concentration of 5.6 μg l−1 was 5%. The recovery of Cr(VI) was in the range of 94–100%, dependently on type of the sample.

The investigation of recovery of the spiked Cr(VI) showed that at concentration levels near 1 μg l−1 and lower recovery may be reduced significantly even by pure reagents that seem to be free from any reductants.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号