首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of the relative intensity method for measurement of the rotational temperature of nitrogen in a rarefied air flow by means of glow-discharge excitation of luminescence is described. Special features of measurement of the rotational temperature at low static pressure of the gas in the flow are noted. Profiles of the rotational temperature along the stagnation line in the case of transverse flow over a cylinder are obtained. The dependence of the measurement error on the temperature is discussed.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 139–143, March–April, 1971.  相似文献   

2.
A problem of sphere rotation in a rarefied molecular gas is solved in an isothermal approximation. The particle velocity profile in the rarefied molecular gas entrained by the rotating sphere is obtained with a second-order correction in terms of the Knudsen number. For a rarefied molecular gas, in contrast to a monatomic gas, the particle velocity is demonstrated to depend substantially on the Prandtl number if rotational degrees of freedom of molecules are taken into account.  相似文献   

3.
Flow of a rarefied gas over a flat plate has been investigated numerically by a number of authors, using both the kinetic model equations (e.g., 1, 2]) and the Boltzmann equation [3, 6], In most cases a solution was found for a monatomic gas. The appreciable influence of the molecule structure on local and total aerodynamic characteristics and on the flow field over a flat plate at small angles of attack was noted in [1, 5, 7], where the authors examined various models for the rotational molecular degrees of freedom. In the present paper a two-point repulsion center model with constant collision cross section is used to investigate the influence of internal degrees of freedom of the molecule in flow over a plate, positioned parallel to (angle of attack = 0), and transverse to ( = 90 °) a rarefied gas stream. The data are compared with those calculated for a monatomic gas and from experimental results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 151–156, November–December, 1978.  相似文献   

4.
The article gives the numerical results of an investigation of flow near the leading critical flow line with the hypersonic flow of carbon dioxide gas around a sphere. The investigation was made on the basis of a simplified system of Navier-Stokes equations for a five-component model of the gas, taking account of dissociation-recombination relaxation processes of the components of the gas, as well as of the excitation and deactivation of the vibrational degrees of freedom of molecules of carbon dioxide gas. The calculations were made in a range of values of the pressure in the oncoming flow from 10?7 to 10?3 atm, and of the velocity from 4.5 to 8 km/sec for a sphere of radius 2 m. The surface of the sphere was assumed to be either ideally catalytic or chemically neutral. The dependence of the heat-transfer parameter on the determining parameters of the flow is obtained.  相似文献   

5.
A sphere is allowed to move with three degrees of freedom in an axisymmetric flow field and general formulae, correct to the third power of the sphere's radius, are developed for the Stokes resistance experienced by the sphere. These are shown to depend on the behaviour within the sphere of the reflected velocity fields which arise from the presence of fixed boundaries at finite distances from stokeslets placed at the sphere's center. Application is made to the stagnation flow at a plane. Poiseuille flow and flow past a sphere and some comparisons made with exact formulae. Solutions are given for asymmetrically placed stokeslets near a hole in a plane wall or a disk.  相似文献   

6.
Hypersonic rarefied gas flow over the windward face of a sphere is considered in the presence of distributed injection from the surface of the body. A similar problem was previously solved in [1–3] within the framework of continuum mechanics and in [4] on the basis of model kinetic equations. In the present study the calculations were carried out using the Monte Carlo method of direct statistical modeling [5, 6]. The injected gas was the same as the free-stream gas. A simple monatomic gas model with a rigid sphere interaction potential was employed. The reflection of the molecules from the surface of the body was assumed to be diffuse with total energy accommodation. The calculation procedure using weighting factors is described in [7]. The influence of injection on the mechanical and thermal effect of the gas flow on the body is investigated for various degrees of rarefaction of the medium and injection rates.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 175–179, July–August, 1990.  相似文献   

7.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.   相似文献   

8.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.  相似文献   

9.
The effect of the internal molecular degrees of freedom on the flow field and heat transfer in hypersonic rarefied gas flow past a cylinder or sphere is investigated using the direct statistical simulation (Monte-Carlo) method. The variable-diameter rough spherical molecule model (VRS-model) is generalized to include the case of energy exchange between the translational and vibrational degrees of freedom. The interaction between diatomic molecules with allowance for vibrational degrees of freedom is simulated as the interaction of classical or quantum-mechanical harmonic and anharmonic oscillators in the external force approximation. A model of the dissociation of a diatomic gas is proposed.  相似文献   

10.
V. A. Rykov 《Fluid Dynamics》1981,16(5):795-797
Slow flow of a rarefied gas over a nonuniformly heated plate is investigated numerically. The interaction of the oncoming stream with the flow due to the variable temperature of the gas near the body is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 181–184, September–October, 1981.  相似文献   

11.
The nearly free molecular hypersonic flow of rarefied gas over bodies of different geometrical shapes (sphere, disk, cone) is considered. A study is made of the influence of the composition of the atmospheric gas on the aerodynamic characteristics of these bodies when the flow past them is not symmetric and they rotate around one of their axes.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 166–169, October–December, 1981.  相似文献   

12.
On the basis of model kinetic equations a solution is obtained by a numerical method for the flow of attenuated gas around a sphere. The effect of rotational degrees of freedom on the energy flux to the body is investigated. Values of the ratio between the energy flux Q and its free-molecular value Q* for monatomic and diatomic gases are compared; for the comparison, the dimensionless temperature of the body, the gas velocity at infinity, and the law of viscosity must be the same in the two cases. For sufficiently cold bodies (when the body temperature is below the equilibrium temperature for a diatomic gas) the difference between Q/Q* for monatomic and diatomic gases is insignificant. For a diatomic gas when the body temperature is close to equilibrium, the ratio Q/Q* is found to have a nonmonotonic dependence on the Knudsen force.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 119–124, September–October, 1977.  相似文献   

13.
A numerical study is made of supersonic flow of a viscous gas in the vicinity of the stagnation line of plane and axisymmetric blunt bodies (cylinder, sphere). As in [1–5], which consider the compressed layer of a viscous gas in the vicinity of the stagnation point, use is made of the locally self-similar approximation, which is used to transform the Navier-Stokes equations into a system of ordinary differential equations. In the present paper the solution is sought with the simplifications of [5] and with more general conditions, which makes it possible to study a broad class of flows. The proposed numerical algorithm permits obtaining the structure of the compressed layer near the stagnation line, including the shock wave and the boundary layer. The calculations made on a computer for different flow conditions are illustrated by graphs.The author wishes to thank G. I. Petrov, G. F. Telenin, and L. A., Chudov for their interest in the study and for their helpful discussions. discussions.  相似文献   

14.
The formation of a pulsed jet behind supersonic nozzles is considered when relaxation processes take place in the gas entering the nozzle. In a general formulation, the problem of the motion of the front of the exhausting matter and the disturbances accompanying it in the process of formation of a pulsed jet is determined by a large number of parameters, which characterize the exhausting gas and the residual gas of the pressure chamber and also the geometry of the flow conditions. A reliable computational model of a pulsed jet does not exist. To construct such a model, experiments are required in a wide range of boundary and initial conditions. An investigation was made into flow of shockheated argon, nitrogen, and carbon dioxide out of nozzles set up at the end of a shock tube. Generalized dependences were obtained for describing the motion of the front of the nonstationary jet and the wave in front of it in a wide range of the initial pressure-difference parameters and variation of the stagnation temperatures. The choice of the generalized parameters when relaxation of the excited internal degrees of freedom of the molecules of the gas can occur at the entrance to the nozzle is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 129–135, November–December, 1980.  相似文献   

15.
Flow of a diatomic rarefied gas in a capillary tube of infinite length and an arbitrary cross-section under a given small pressure gradient (Poiseuille flow) or a small temperature gradient (thermal creep) is studied on the basis of a kinetic model that takes account for the rotational degrees of freedom of molecules (R-model). Numerical investigation is carried out for flows between parallel flat plates and in a circular capillary tube at the gas parameters corresponding to nitrogen. The main calculated quantity is the gas flow rate through a tube cross-section. The results are compared with the corresponding data obtained on the basis of the S-model.  相似文献   

16.
The problem of the steady-plane monatomic rarefied gas flow around a semiinfinite bar is considered (the plane stationary case of the problem about the bottom zone). The problem is solved numerically at the level of the Krook relaxation model [1, 2]. A depenence of the gas density, velocity, and temperature in the whole flow domain on the space coordinates is obtained for supersonic and subsonic gas streams flowing around a body by using calculations on an M-20 electronic calculator.Khar'kov. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 139–143, January–February, 1972.  相似文献   

17.
The unsteady flow in the neighborhood of the stagnation line on a sphere traveling at supersonic speed through a plane layer of diatomic gas with elevated temperature and nonequilibrium excitation of the molecular vibrations is investigated. (The source of the inhomogeneity could be a gas discharge [1].) The problem is solved using the viscous shock layer model which makes it possible to take molecular transport processes into account and analyze the unsteady heat transfer. Such flows were previously calculated in [2] within the framework of the inviscid gas model.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i GazNo. 3, pp. 183–185, May–June, 1990.  相似文献   

18.
The combined influence of unsteady effects and free-stream nonuniformity on the variation of the flow structure near the stagnation line and the mechanical and thermal surface loads is investigated within the framework of the thin viscous shock layer model with reference to the example of the motion of blunt bodies at constant velocity through a plane temperature inhomogeneity. The dependence of the friction and heat transfer coefficients on the Reynolds number, the shape of the body and the parameters of the temperature inhomogeneity is analyzed. A number of properties of the flow are established on the basis of numerical solutions obtained over a broad range of variation of the governing parameters. By comparing the solutions obtained in the exact formulation with the calculations made in the quasisteady approximation the region of applicability of the latter is determined. In a number of cases of the motion of a body at supersonic speed in nonuniform media it is necessary to take into account the effect of the nonstationarity of the problem on the flow parameters. In particular, as the results of experiments [1] show, at Strouhal numbers of the order of unity the unsteady effects are important in the problem of the motion of a body through a temperature inhomogeneity. In a number of studies the nonstationary effect associated with supersonic motion in nonuniform media has already been investigated theoretically. In [2] the Euler equations were used, while in [3–5] the equations of a viscous shock layer were used; moreover, whereas in [3–4] the solution was limited to the neighborhood of the stagnation line, in [5] it was obtained for the entire forward surface of a sphere. The effect of free-stream nonuniformity on the structure of the viscous shock layer in steady flow past axisymmetric bodies was studied in [6, 7] and for certain particular cases of three-dimensional flow in [8–11].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 175–180, May–June, 1990.  相似文献   

19.
It was shown in [1–4] that the reflection of a sound wave or its transmission through a shock front should be accompanied by attenuation or intensification of the wave is regarded as a discontinuity. In accordance with current representations [5, 6], a shock wave includes a viscous shock and a lengthy relaxation zone. Equilibrium is established with respect to translational and rotational degrees of freedom in the viscous shock and with respect to internal degrees of freedom in the relaxation zone. The result of the interaction of the shock and sound waves is determined by the relationship between the length of the sound wave and the width of the shock wave.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 90–94, May–June, 1986.  相似文献   

20.
Taking account of rotational and vibrational degrees of freedom of the molecules, a system of equations has been obtained for a molecular gas which describes slightly nonequilibrium states with a length and time on the order of magnitude of the length and time of the rotational and vibrational relaxation. By solving this system, which describes the propagation of sound and the transfer process, the absorption coefficient, the dispersion of the velocity of sound, the transfer coefficients (in particular, the thermal conductivity coefficient), and an expression for the total tensor of the pressures have been found and analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 53–67, September–October, 1970.The author thanks V. M. Zhdanov for his valuable advice and remarks, and also Yu, Ya. Polyak and B. M. Chistoserdov for their useful evaluations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号