首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Accurate measurements of important tensile properties of thin metal foils are often quite difficult to achieve in uniaxial tests because of sample-preparation difficulties and the tensile instability called necking. Consequently, hydraulic bulge tests have been introduced as a successful means of suppressing these problems through the use of a simplified specimen geometry and biaxial rather than uniaxial tensile-stress states. Considerable effort has been made by various investigators to relate such biaxial stress-strain and ductility data to uniaxial data, generally following the assumption that the bulge is shaped like a spherical cap. The present study evaluates this assumption for foils by measuring actual shapes with unprecedented accuracy and detail using the two-source holographic technique and a polynomial-spline computer analysis of the resulting interferograms. These measurements were made on nine specimens of 0.127-mm-thick annealed rolled copper foil which had been deformed into bulges of varying heights up to rupture. A comparison is made between the measured shapes and the spherical-cap shape generally assumed in the interpretation of bulge-test data. The spherical assumption gives results which are reasonably valid for the later stages of deformation. Indeed, the stress-strain curve obtained from bulge testing corresponds closely with the uniaxial tensile curves for this material. The strain at failure (i.e., elongation) was greater in the biaxial bulge test than in the uniaxial test but not nearly as great as the strain expected from a theoretical model proposed by Hill. However, all the specimens measured exhibited localized areas with larger radii of curvature. The presence of these “flats” may be associated with a mode of failure in the bulge test which corresponds to necking instability in the uniaxial test, and thereby account for the limited strain to failure.  相似文献   

2.
The aim of this work is to measure and model the planar anisotropy of thin steel sheets. The experimental data have been collected using the digital image correlation technique. This is a powerful tool to measure the strain field on differently shaped specimens subjected to large plastic deformations. In this manner, it is possible to observe the material behaviour under different stress-strain states, from small to large deformation conditions, on the entire specimen surface. The experimental results on smooth and notched samples have been used to characterize the flow stress curve after necking and a nonassociated plastic flow rule is proposed to describe the anisotropic behaviour of the material. To compare the experimental data with the predictions of the adopted constitutive model, a novel method, based on the image correlation results, has been implemented.  相似文献   

3.
Unlike metals, necking in polymers under tension does not lead to further localization of deformation, but to propagation of the neck along the specimen. Finite element analysis is used to numerically study necking and neck propagation in amorphous glassy polymers under plane strain tension during large strain plastic flow. The constitutive model used in the analyses features strain-rate, pressure, and temperature dependent yield, softening immediately after yield and subsequent orientational hardening with further plastic deformation. The latter is associated with distortion of the underlying molecular network structure of the material, and is modelled here by adopting a recently proposed network theory developed for rubber elasticity. Previous studies of necking instabilities have almost invariably employed idealized prismatic specimens; here, we explicitly account for the unavoidable grip sections of test specimens. The effects of initial imperfections, strain softening, orientation hardening, strain-rate as well as of specimen geometry and boundary conditions are discussed. The physical mechanisms for necking and neck propagation, in terms of our constitutive model, are discussed on the basis of a detailed parameter study.  相似文献   

4.
The uniaxial true stress logarithmic strain curve for a thick section can be determined from the load–diameter reduction record of a round tensile specimen. The correction of the true stress for necking can be performed by using the well-known Bridgman equation. For thin sections, it is more practical to use specimens with rectangular cross-section. However, there is no established method to determine the complete true stress–logarithmic strain relation from a rectangular specimen. In this paper, an extensive three-dimensional numerical study has been carried out on the diffuse necking behaviour of tensile specimens made of isotropic materials with rectangular cross-section, and an approximate relation is established between the area reduction of the minimum cross-section and the measured thickness reduction. It is found that the area reduction can be normalized by the uniaxial strain at maximum load which represents the material hardening and also the section aspect ratio. Furthermore, for the same material, specimens with different aspect ratio give exactly the same true average stress–logarithmic strain curve. This finding implies that Bridgmans correction can still be used for necking correction of the true average stress obtained from rectangular specimens. Based on this finding, a method for determining the true stress–logarithmic strain relation from the load–thickness reduction curve of specimens with rectangular cross-section is proposed.  相似文献   

5.
The objective of this effort was to extend the Bridgman analysis of tensile necking to obtain stress-strain data beyond the point of onset of necking from a split Hopkinson bar. For this purpose, combined analytical and experimental techniques were considered. The analytical efforts were focused on validating the use of Bridgman solutions for high rate of deformation through a finite-element analysis of a tapered tensile specimen. The experimental technique involved the development of a photographic system using a light-emitting diode and a 35-mm rotating drum camera for the observation of necking during dynamic tensile tests conducted with a split Hopkinson tension bar. The developed new technique was successfully used to measure neck profiles of 6061-T6 aluminum, HY100 and 1020 steel tensile specimens. The measured profiles were used with the Bridgman analysis and stress-strain data were obtained to over 70-percent strain.  相似文献   

6.
实心圆试件扭转试验确定大应变本构关系   总被引:11,自引:0,他引:11  
何蕴增  邹广平 《力学学报》2001,33(6):828-833
提出并完成了通过实心圆轴扭转试验建立大应变本构关系的方法。它比单向拉伸试验所得到的本构关系更为精确。因拉伸实验变形较大时试件伸长和变细对测量结果有影响;尤其在“颈缩”后,很难对有关力学量作有效测量和分析。即扭转本构关系的描绘更为完整。以低碳钢为例,扭转本构关系所描述的有效区间比拉伸本构关系大十余倍。该方法将有利于探讨研究更大应变下的材料力学行为。  相似文献   

7.
The visioplasticity method has been used to obtain the stress and strain distributions during planestrain bending in a standard Charpy V-notched specimen of low carbon steel. The specimen was slit longitudinally through the notch with a square grid inscribed on the interface. The instantaneous grid distortion was obtained during a three-point incremental bending test. A computer program was developed for the calculation of the instantaneous stress and strain distributions using the experimentally determined displacement field and the true stress-strain curve of the steel.  相似文献   

8.
Neck retardation in stretching of ductile materials is promoted by strain hardening, strain-rate hardening and inertia. Retardation is usually beneficial because necking is often the precursor to ductile failure. The interaction of material behavior and inertia in necking retardation is complicated, in part, because necking is highly nonlinear but also because the mathematical character of the response changes in a fundamental way from rate-independent necking to rate-dependent necking, whether due to material constitutive behavior or to inertia. For rate-dependent behavior, neck development requires the introduction of an imperfection, and the rate of neck growth in the early stages is closely tied to the imperfection amplitude. When inertia is important, multiple necks form. In contrast, for rate-independent materials deformed quasi-statically, single necks are preferred and they can emerge in an imperfection-free specimen as a bifurcation at a critical strain. In this paper, the interaction of material properties and inertia in determining neck retardation is unraveled using a variety of analysis methods for thin sheets and plates undergoing plane strain extension. Dimensionless parameters are identified, as are the regimes in which they play an important role.  相似文献   

9.
Simple shear tests are widely used for material characterization especially for sheet metals to achieve large deformations without plastic instability. This work describes three different shear tests for sheet metals in order to enhance the knowledge of the material behavior under shear conditions. The test setups are different in terms of the specimen geometry and the fixtures. A shear test setup as proposed by Miyauchi, according to the ASTM standard sample, as well as an in-plane torsion test are compared in this study. A detailed analysis of the experimental strain distribution measured by digital image correlation is discussed for each test. Finite element simulations are carried out to evaluate the effect of specimen geometries on the stress distributions in the shear zones. The experimental macroscopic flow stress vs. strain behavior shows no significant influence of the specimen geometry when similar strain measurements and evaluation schemes are used. Minor differences in terms of the stress distribution in the shear zone can be detected in the numerical results. This work attempts to give a unique overview and a detailed study of the most commonly used shear tests for sheet metal characterization. It also provides information on the applicability of each test for the observation of the material behavior under shear stress with a view to material modeling for finite element simulations.  相似文献   

10.
Necking is a significant part of the yielding process in many thermoplastics. It starts as strain localization associated with microshear banding and/or cavitations and appears as a domain of oriented (drawn) material, i.e., a “neck”, separated from the domain of original (isotropic) material by a narrow transition zone, which appears as a distinct boundary of the neck region. On further increase of displacement, the neck propagates through the test specimen under constant draw stress. Strain localization such as crazing and shear bending is associated with necking on micro- and sub-microscales. As a result material toughness, i.e., resistance to cracking, as well as durability, i.e., service lifetime under various service conditions, are related to the material ability to necking and specific characteristics of necking process. Necking is manifested in significant changes in a characteristic length scale, e.g., the distance between equally spaced marks in the reference state may increases by factor of 2 in amorphous polymers and up to a factor of 10 in some semicrystalline thermoplastics. There is also a characteristic relaxation time change during the necking. Thus from continuum mechanics viewpoint, the changes of intrinsic material space-time metric are the most fundamental manifestation of necking. Therefore we model necking phenomena as space-time scales transformation and introduce a four-dimensional (4D) Riemannian metric tensor of a material space-time imbedded into 4D Newtonian (laboratory) space-time with a Euclidean metric. Kinetic equation of necking, i.e., evolution equation for material metric tensor is derived using extremal action principle. An example of traveling wave solution for neck propagation in a tensile bar is presented. Analysis of the solution and comparison with experimental observations are discussed.  相似文献   

11.
Two-dimensional analysis of the split hopkinson pressure bar system   总被引:1,自引:0,他引:1  
The split Hopkinson pressure bar is widely used to measure the dynamic properties of solid materials. This paper presents the results of the first comprehensive two-dimensional numerical analysis of the technique, and quantitatively describes the effects of realistic friction and of variations in both the specimen geometry and the imposed strain-rate on the validity of the assumptions used in analyzing experimental data. A two-dimensional axisymmetric numerical analysis is used to compute all components of the stress, strain and strain-rate tensors at each mesh point within the specimen and the elastic bars. The calculated response of the pressure bars is used to reconstruct the stress-strain behavior of the specimen and this is compared to both the input stress-strain curve and the actual calculated stress-strain states in the specimen. Thus, the validity of the assumptions and the corrections used in the analysis of the data is determined.Inertia and friction between the specimen and the elastic bars affect the response of the specimen differently for different length-to-diameter ratios. Inertia effects produce stress waves propagating radially and axially in the specimen and may result in an oscillating reconstructed stress-strain curve. If the ends of the specimen are well lubricated and care is taken to minimize the effects of inertia, the reconstructed stress-strain curve agrees with the input. However, serious stress and strain nonuniformity exists when the ends are not lubricated and this results in a reconstructed stress-strain curve where, for any given strain, the stress magnitude is larger than the correct value. A comparison of the calculations with experiment shows excellent agreement for various interface conditions. Finally, the inertia correction of E.D.H. Davies and S.C. Hunter (1963) is found to be reasonable.  相似文献   

12.
A complete three-dimensional FEM model of the Bar-Bar Tensile Impact Apparatus (BTIA) is constructed, in which the slots in the bars and the glue layers between the bars and the flat-shaped specimen are included. For elastic-plastic specimen material, Ly12cz aluminum alloy, the process of tensile impact experiments is simulated and the matching relation between the specimen geometry and the bars is investigated. Based on the FEM analysis, an iterative method is proposed to design a reasonable specimen geometry for obtaining the true dynamic stress-strain relation for a certain specimen material. The project supported by the National Natural Science Foundation of China (19272061)  相似文献   

13.
Recent experiments have shown that nano-sized metallic glass (MG) specimens subjected to tensile loading exhibit increased ductility and work hardening. Failure occurs by necking as opposed to shear banding which is seen in bulk samples. Also, the necking is generally observed at shallow notches present on the specimen surface. In this work, continuum finite element analysis of tensile loading of nano-sized notched MG specimens is conducted using a thermodynamically consistent non-local plasticity model to clearly understand the deformation behavior from a mechanics perspective. It is found that plastic zone size in front of the notch attains a saturation level at the stage when a dominant shear band forms extending across the specimen. This size scales with an intrinsic material length associated with the interaction stress between flow defects. A transition in deformation behavior from quasi-brittle to ductile becomes possible when this critical plastic zone size is larger than the uncracked ligament length. These observations corroborate with atomistic simulations and experimental results.  相似文献   

14.
This paper is concerned with the standard uncertainty of the true stress–true strain curve as the tensile properties of auto-body steel sheets at intermediate strain rates ranged from 1 to 100 s?1. A procedure to obtain true stress–true strain data is properly designed for the experiment and data acquisition. An analytic model is then established to evaluate the standard uncertainty of the measurand. The measurand in this case is the true stress which is a function of the input quantities: the tensile load; the initial length, the thickness and the width of a specimen; and the deformed length of a specimen. Sources of uncertainties of the input quantities are evaluated for the high speed tensile test with their associated sensitivity coefficients. Uncertainty of the stress data acquired is also considered in the procedure of the fast Fourier transform (FFT) smoothing process used to remove unnecessary signals acquired from experiments. Image analysis using a high speed camera is carried out to measure deformation of the specimen during high speed tensile tests with proper uncertainty evaluation. A combined standard uncertainty is evaluated from the uncertainties of the input quantities as well as the influence factor for the true stress of auto-body steel sheets at intermediate strain rates. Consequently, the true stress–true strain data are obtained with proper standard uncertainty evaluation.  相似文献   

15.
A uniaxial tension sheet metal coupon with a tapered instead of a straight gage section has been used for centering the location of diffuse neck and for measuring sheet stretchability in a non-uniform strain field. A finite element analysis of such a tensile coupon made of automotive steel sheet metals has been carried out to assess the effect of the tapered gage section geometry and material plastic strain hardening characteristics on the development of local plastic deformation pattern and local stress state, especially beyond the onset of diffuse necking but before localized necking. In particular, the finite element analysis was used in this study to evaluate the accuracy and reliability of an experimental data analysis method for estimating the post-necking effective plastic stress-strain curve based on the direct local surface axial plastic strain measurements for base metal, heat-affected zone, and weld metals of a dual-phase steel DP600. It is concluded that the estimated lower and upper bounds of the effective stress-strain curve at large strains are not satisfactory for low strain-hardening materials such as heat-affected zone and weld metals with the tapered tension coupons. A simple correction method utilizing only the additional local surface strain measurement in the transverse direction is proposed and it is shown to be effective in correcting the estimated effective stress-strain curve of dual-phase steel weld metals obtained for two tapered gage section geometries.  相似文献   

16.
A new device was developed to assess fatigue life under biaxial tensile loading at elevated temperatures. It makes use of an annular disk specimen and can be easily mounted onto a standard push-pull machine so that the axial force is converted into radial forces extending across the disk specimen. Therefore, a positive ratio of the tangential to the radial stress can be imposed at the reduced section of the disk specimen; this ratio depends on the specimen configuration and may be fixed to a value ranging from 0.5 to 0.9 by varying the inner diameter of the disk. The proposed device has performed successfully and was used to study the cyclic behavior of Type-304 stainless steel subjected to various biaxial tensile stress states at room temperature and at 200°C. The data obtained from this experimental procedure have been analyzed to evaluate the effectiveness of some correlations already available for treating the biaxial cyclic stress-strain response in terms of the uniaxial behavior. This analysis shows that a successful correlation should account for all the stress components. The authors discuss the concept used in the modeling of the material cyclic behavior and the formulation of a biaxial fatigue damage parameter necessary for an effective analytical life prediction methodology.  相似文献   

17.
朱耀  庞宝君  盖秉政 《实验力学》2009,24(5):433-438
针对杆杆型动态拉伸试验系统设计了一种新型的楔形卡口试件装卡方式.利用ANSYS/LS-DYNA软件,建立采用该新型试件装卡方式的直接式杆杆动态拉伸系统的三维有限元模型,并进行数值仿真试验.得到的波形与SHB(Split Hopkinson Bar)试验典型波形相符合,得到的动态应力应变曲线与输入材料模型曲线趋势是一致的.利用这种装卡方式对一种2024铝合金进行动态拉伸试验,得到的动态拉伸应力应变曲线与利用SHPB试验得到的动态压缩曲线基本一致,证明这种新型试件装卡方式是有效的.  相似文献   

18.
A damage accumulation model is presented for the study of the problem of crack initiation and stable growth in an elastic-plastic material. A centre-cracked specimen subjected to a uniform stress perpendicular to the crack plane is considered. A coupled stress and failure analysis is performed by using a finite element computer program based on J2-plasticity theory in conjunction with the strain energy density theory. After initial yielding, each material element follows a different equivalent uniaxial stress-strain behavior depending on the amount of energy dissipation by permanent deformation. A host of uniaxial stress-strain curves constituting parts of the same stress-strain curve were assigned to material elements for each increment of loading. The path-dependent nature of the onset of crack initiation and growth was revealed. The proposed model predicts faster crack growth rates than those obtained on the basis of a single uniaxial stress-strain curve and is closer to experimental observation.  相似文献   

19.
摘 要: 材料拉伸直至断裂的全程单轴本构关系对材料大变形和断裂机理研究具有重要意义。传统拉伸试验获取的材料真应力-真应变曲线在试样颈缩后不可测。借助可以精确测量三维变形的DIC(Digital image correlate) 技术和有限元分析技术(Finite element analysis),本文提出了基于漏斗试样拉伸试验获取材料全程单轴本构关系的新方法,即TF(Test and FEA)方法。该方法将TF方法获取的材料全程单轴应力应变关系曲线作为有限元软件中的材料本构关系对漏斗试样拉伸变形过程进行模拟,其模拟载荷-位移曲线、漏斗根部直径-位移曲线和漏斗变形轮廓线等均与试验结果吻合良好,试样表面模拟应变也与DIC测试结果吻合, 根据不同半径漏斗试样模拟获得的全程真应力-真应变曲线保持良好一致性。最后,还对试样颈缩断面的力学行为进行了讨论,并给出了304不锈钢、汽轮机叶片材料2Cr12Ni4Mo3VNBN和 1Gr12Ni3Mo2VN、汽轮机转子材料30Cr2Ni4MoV的全程单轴本构关系模型参数、破断应力和破断应变。  相似文献   

20.
为了能够在不停输油气工况下获得在役管道材料的弹塑性力学性能, 提出了一种人工智能BP (back-propagation)神经网络、小冲杆试验与有限元模拟相结合,通过确定材料真应力-应变曲线从而获得材料弹塑性力学性能的方法. 首先,通过系统改变Hollomon公式中的参数$K$, $n$值,获得457组具有不同弹塑性力学性能的假想材料本构关系, 其次,将得到的本构关系代入经试验验证的含有Gurson-Tvergaard-Needleman(GTN)损伤参数的小冲杆试验二维轴对称有限元模型,通过有限元计算得到了与真应力-应变曲线一一对应的457条不同假想材料的载荷-位移曲线,最终将两组数据作为数据库输入BP神经网络进行训练,建立了同种材料小冲杆试验载荷-位移曲线与真应力-应变曲线之间的关联关系.通过此关联关系,可利用试验得到的小冲杆载荷-位移曲线获取在役管道钢的真应力-应变曲线,从而确定其弹塑性力学性能.通过对比BP神经网络得到的X80管道钢真应力-应变曲线与单轴拉伸试验的结果以及引用现有文献中不同材料的试验数据对此关系进行验证,证明了该方法的准确性与广泛适用性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号