首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

2.
Several novel compounds with the non-linear optical chromophore 2-amino-5-nitropyridine (2A5NP) and Keggin polyoxoanions (alpha-isomers), having the general formula (2A5NP)(m)H(n)[XM12O40].xH2O, M = Mo, W, were synthesised. Compounds were obtained with X = P, n = 3, m = 3 and 4 and X = Si, n = m = 4 (x = 2-6). Thus, for each of the anions [PMo12O40]3- and [PW12O40]3- two different compounds were obtained, with the same anion and organic counterpart but with a different stoichiometric ratio. These presented different charge transfer properties and thermal stability. All compounds were characterised by spectroscopic and analytical techniques. The single crystal X-ray diffraction structure of (2A5NP)4H3[PMo12O40].2.5H2O.0.5C2H5OH showed that the water solvent molecules and the organic chromophores are assembled via infinite one-dimensional chains of hydrogen bonds with formation of open channels, which accommodate [PMo12O40]3- and ethanol solvent molecules.  相似文献   

3.
In searching for coordination polymers containing the highly polarized 5-nitro-pyrimidin-2-olate ligand (NP), a number of species containing 3d transition metals have been prepared and characterized, namely Co(NP)2(H2O)4, [Co(NP)2]n, Ni(NP)2(H2O)4, [Ni(NP)2]x, and [Zn(NP)2]n. Their structures have been determined by X-ray powder diffraction methods. The hydrated compounds contain mononuclear M(NP)2(H2O)4 units interconnected by means of a three-dimensional (3D) network of hydrogen bonds. The homoleptic species, at variance from the already known metal(II) pyrimidin-2-olate ones, crystallize as two-dimensional (2D) slabs, where the metal coordination is of the MN3O kind. The electron-withdrawing nitro group, never bound to the metal ion, is likely to influence the observed stereochemistry through steric and dipolar effects within the crystal lattice. The thermal, spectroscopic, and magnetic properties of these species are presented. The M(NP)2(H2O)4/[M(NP)2]x,n systems interconvert reversibly upon dehydration/rehydration processes.  相似文献   

4.
The direct reaction of europium with 2-propanol and phenols has been investigated under a variety of conditions. The reaction of europium metal with 2,6-dimethylphenol and 2,6-diisopropylphenol in 2-propanol at reflux revealed that polymetallic europium complexes could be generated by this method. Hx[Eu8O6(OC6H3Me2-2,6)12(OiPr)8], 1, and H5[Eu5O5(OC6H3iPr2-2,6)6(NCCH3)8], 2, were isolated by recrystallization in the presence of hexanes and acetonitrile, respectively, and characterized by X-ray crystallography. Complex 1 has a cubic arrangement of europium ions with face-bridging mu 4-O donor atoms, edge-bridging mu-O(phenoxide/phenol) ligands, and terminal O(isopropoxide/2-propanol) ligands. Complex 2 is mixed valent and has a square pyramidal europium core with four Eu(II) ions at the basal positions and one Eu(III) ion at the apex. Since these reactions gave complicated mixtures of products from which 1 and 2 could only be obtained in low yields, direct reactions under less forcing reaction conditions were investigated. Europium reacts slowly at room temperature to form arene-soluble divalent [Eu(OiPr)2(THF)x]n, 3. Complex 3 reacts with 2,6-dimethylphenol to form the arene-insoluble complex (H[Eu(OC6H3Me2)2(OiPr)])n, 4. Recrystallization of 4 in the presence of THF results in the crystallographically characterizable divalent trimetallic complex [Eu(OC6H3Me2-2,6)2(THF)2]3, 5, which has an unusual linear metal geometry. In the presence of HOiPr at ambient conditions in the glovebox, crystals of 5 slowly convert to the mixed valent H10[Eu8O8(OC6H3Me2-2,6)10(OiPr)2(THF)6], 6, which was found to have a cubic arrangement of europium atoms similar to 1 by X-ray crystallography. Complex 4, upon heating under vacuum, followed by reaction with THF, forms the arene-soluble divalent complex H18([Eu9O8(OC6H3Me2-2,6)10(THF)7][Eu9O9(OC6H3Me2-2,6)10(THF)6]), 7, which contains two types of capped cubic arrangements of europium ions in the solid state.  相似文献   

5.
The reaction between [Rh[C5H4CO2(CH)2OH](NBD)] (1) and 1,1'-carbonyldiimidazole (CDI) leads to the new CO2-imidazole functionalized alkoxycarbonylcyclopentadienyl complex [Rh[C5H4CO2(CH2)2O2C-Im](NBD)] (2) (Im=imidazole). The latter was treated with five generations of poly(propylenimine) dendrimers DAB-dendr-(NH2)(n) [n=4, 8, 16, 32, 64] (DAB=diaminobutane) to accomplish the synthesis of the new organometallic dendritic macromolecules DAB-dendr-[NH(O)COCH2CH2OC(O)C5H4Rh(NBD)](n) [n=4 (4), 8 (5), 16 (6), 32 (7), 64 (8)] based on flexible poly(propylenimine) dendrimer cores, built up to the fifth generation. Spectroscopic characterization of all the new compounds will be presented and discussed.  相似文献   

6.
Treatment of M(OiPr)4 (M = Ti, V) and [Zr(OEt)4]4 with excess 1,4-HOC6H4OH in THF afforded [M(OC6H4O)a(OC6H4OH)3.34-1.83a(OiPr)0.66-0.17a(THF)0.2]n (M = Ti, 1-Ti; V, 1-V, 0.91 < or = a < or = 1.82) and [Zr(1,4-OC6H4O)2-x(OEt)2x]n (1-Zr, x = 0.9). The combination of of 1-M (M = Ti, V, Zr) or M(OiPr)4 (M = Ti, V), excess 1,4- or 1,3-HOC6H4OH, and pyridine or 4-phenylpyridine at 100 degrees C for 1 d to 2 weeks afforded various 2-dimensional covalent metal-organic networks: [cis-M(mu 1,4-OC6H4O)2py2] infinity (2-M, M = Ti, Zr), [trans-M(mu 1,4-OC6H4O)2py2.py] infinity (3-M, M = Ti, V), solid solutions [trans-TixV1-x(mu 1,4-OC6H4O)2py2.py] infinity (3-TixV1-x, x approximately 0.4, 0.6, 0.9), [trans-M(mu 1,4-OC6H4O)2(4-Ph-py)2] infinity (4-M, M = Ti, V), [trans-Ti(mu 1,3-OC6H4O)2py2] infinity (5-Ti), and [trans-Ti(mu 1,3-OC6H4O)2(4-Ph-py)2] infinity (6-Ti). Single-crystal X-ray diffraction experiments confirmed the pleated sheet structure of 2-Ti, the flat sheet structure of 3-Ti, and the rippled sheet structures of 4-Ti, 5-Ti, and 6-Ti. Through protolytic quenching studies and by correspondence of powder XRD patterns with known titanium species, the remaining complexes were structurally assigned. With py or 4-Ph-py present, aggregation of titanium centers is disrupted, relegating the building block to the cis- or trans-(ArO)4Tipy2 core. The sheet structure types are determined by the size of the metal and the interpenetration of the layers, which occurs primarily through the pyridine residues and inhibits intercalation chemistry.  相似文献   

7.
Helical complexes formed between aluminum tris(2,6-diphenylphenoxide) (ATPH) and five different aldehydes have been prepared and structurally characterized by X-ray diffraction. It was found that [Al(OC6H3Ph2)3PhCHO] (2), [Al(OC6H3Ph2)3(4-CH3C6H4CHO)] (3), [Al(OC6H3Ph2)3(4-tBuC6H4CHO)] (4), and [Al(OC6H3Ph2)3(p-CH3OC6H4CHO)] (5) all crystallize as conglomerates, while crystals of [Al(OC6H3Ph2)3(o-CH3OC6H4CHO)] (6) are racemic. Supramolecular CH/pi interactions between molecules in crystals of 2-5 that enable stereochemical information to be mediated in three dimensions have been identified and explain the high frequency of conglomerate formation among ATPH helicates. Since 2-5 are stereochemically labile and thus enantiomerize rapidly in solution, the conglomerates can be resolved by crystallization-induced asymmetric transformation. The determination of the enantiomeric excess (ee) in solid samples of stereochemically labile molecules is not trivial, but solid-state CD spectroscopic data, anomalous dispersion data, and the ee values in alkylation reactions all indicate that preferential crystallization of 2-5 yields an essentially enantiopure product. Thus the preparation of 2-5 constitute new examples of absolute asymmetric synthesis. The helical chirality can be transferred (and thus trapped) to alcohols (with ee values of up to 16%) in crystal-to-crystal reactions with achiral organometallic reagents.  相似文献   

8.
Treatment of the titanium(IV) alkoxide complex [Ti(Oi Pr)(OC6Me2H(2)CH2)3N] (2) with BH3.THF, as part of a study into the utility and reactivity of (2) in the metal mediated borane reduction of acetophenone, results in alkoxide-hydride exchange and formation of the structurally characterised titanium(iv) tetrahydroborate complex [Ti{BH4}(OC6Me2H2CH2)3N] (3). Complex (3) readily undergoes reduction to form the isolable titanium(III) species [Ti(OC6Me2H2CH2)3N]2 (4). Reaction of (2) with B(C6F5)3 results in formation of the Lewis acid adduct [Ti(OC6Me2H2CH2)3N][HO.B(C6F5)3] (5). In comparison, treatment of the less sterically encumbered alkoxide Ti(Oi Pr)4 with B(C6F5)3 results in alkoxide-aryl exchange and formation of the organometallic titanium complex [Ti(Oi Pr)3(C6F5)]2 (6). The molecular structures of 3, 4, 5 and 6 have been determined by X-ray diffraction.  相似文献   

9.
The interactions of synthetic chalcocite surfaces with diethyldithiophosphate, potassium salt, K[S2P(OC2H5)2], were studied by means of 31P cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy and scanning electron microscopy (SEM). To identify the species formed on the Cu2S surfaces, a polycrystalline {CuI6[S2P(OC2H5)2]6} cluster was synthesized and analyzed by SEM, powder X-ray diffraction techniques and solid-state 31P CP/MAS NMR and static 65Cu NMR spectroscopy. 31P chemical shift anisotropy (CSA) parameters, delta(cs) and eta(cs), were estimated and used for assigning the bridging type of diethyldithiophosphate ligands in the {CuI6[S2P(OC2H5)2]6} cluster. The latter data were compared to 31P CSA parameters estimated from the spinning sideband patterns in 31P NMR spectra of the collector-treated mineral surfaces: formation of polycrystalline {CuI6[S2P(OC2H5)2]6} on the Cu2S surfaces is suggested. The second-order quadrupolar line shape of 65Cu was simulated, and the NMR interaction parameters, CQ and etaQ, for the copper(I) diethyldithiophosphate cluster were obtained.  相似文献   

10.
The reactions of cyclodiphosphazane cis-[tBuNP(OC6H4OMe-o)]2 (1) with 2 equiv of CuX in acetonitrile afforded one-dimensional Cu(I) coordination polymers [Cu2X2{tBuNP(OC6H4OMe-o)}2]n (2, X = Cl; 3, X = Br; 4, X = I). The crystal structures of 2 and 4 reveal a zigzag arrangement of [P(mu-N)(2)P] and [Cu(mu-X)(2)Cu] units in an alternating manner to form one-dimensional Cu(I) coordination polymers. The reaction between 1 and CuX in a 2:1 ratio afforded mononuclear tricoordinated copper(I) complexes of the type [CuX{(tBuNP(OC6H4OMe-o))2}2] (5, X = Cl; 6, X = Br; 7, X = I). The single-crystal structures were established for the mononuclear copper(I) complexes 5 and 6. When the reactant ratios are 1:1, the formation of a mixture of polymeric and mononuclear products was observed. The Cu(I) polymers (2-4) were converted into the mononuclear complexes (5-7) by reacting with 3 equiv of 1 in dimethyl sulfoxide. Similarly, the mononuclear complexes (5-7) were converted into the corresponding polymeric complexes (2-4) by reacting with 3 equiv of copper(I) halide under mild reaction conditions.  相似文献   

11.
Deprotonation of mixtures of the triazene complexes [RhCl(CO)2(p-MeC6H4NNNHC6H4Me-p)] and [PdCl(eta(3)-C3H5)(p-MeC6H4NNNHC6H4Me-p)] or [PdCl2(PPh3)(p-MeC6H4NNNHC6H4Me-p)] with NEt3 gives the structurally characterised heterobinuclear triazenide-bridged species [(OC)2Rh(mu-p-MeC6H4NNNC6H4Me-p)2PdLL'] {LL' = eta(3)-C3H5 1 or Cl(PPh3) 2} which, in the presence of Me3NO, react with [NBu(n)4]I, [NBu(n)4]Br, [PPN]Cl or [NBu(n)4]NCS to give [(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2PdCl(PPh3)]- (X = I 3-, Br 4-, Cl 5- or NCS 6-) and [NBu(n)4][(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 7- or Br 8-). The allyl complexes 7- and 8- undergo one-electron oxidation to the corresponding unstable neutral complexes 7 and 8 but, in the presence of the appropriate halide, oxidative substitution results in the stable paramagnetic complexes [NBu(n)4][X2Rh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 9- or Br 10-). X-Ray structural (9-), DFT and EPR spectroscopic studies are consistent with the unpaired electron of 9- and 10- localised primarily on the Rh(II) centre of the [RhPd]4+ core, which is susceptible to oxygen coordination at low temperature to give Rh(III)-bound superoxide.  相似文献   

12.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

13.
New modes of 1,3-dipolar cycloaddition are uncovered by the isolation of [CH2(6-t-Bu-4-Me-C6H2O)2]P(C(CO2Me)C(CO2Me)N[NP(N3)(OC6H2-6-t-Bu-4-Me)2CH2]N) (3) and [CH2(6-t-Bu-4-Me-C6H2O)2]P(C(CO2Me)C(CO2Me)C(O)N) (4) on treating [CH2(6-t-Bu-4-Me-C6H2O)2]P-X [X = N3 (1) and NCO (2)] with the dipolarophile MeO2CC identical to CCO2Me; compound 4 undergoes an unprecedented ring expansion upon addition of 2-(methylamino)ethanol to afford the spirocycle [CH2(6-t-Bu-4-Me-C6H2O)2]P(OCH2CH2N(Me)CH(CO2Me)CH(CO2Me)C(O)N) (5).  相似文献   

14.
Li R  Ma P  Dong S  Zhang X  Chen Y  Li X  Jiang J 《Inorganic chemistry》2007,46(26):11397-11404
A series of amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with hydrophilic poly(oxyethylene) heads and hydrophobic alkoxy tails {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8}Eu[Pc(OCnH2n + 1)8] (n = 6, 8, 10,12) (1-4) were designed and prepared from the reaction between homoleptic bis(phthalocyaninato) europium compound {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8} and metal-free 2,3,9,10,16,17,23,24-octakis(alkoxy)phthalocyanine H2Pc(OCnH2n + 1)8 (n = 6, 8, 10,12) in the presence of Eu(acac)3.H2O (Hacac = acetylacetone) in boiling 1,2,4-trichlorobenzene (TCB). These novel sandwich triple-decker complexes have been characterized by a wide range of spectroscopic methods and have been electrochemically studied. With the help of the Langmuir-Blodgett (LB) technique, these typical amphiphilic triple-decker complexes have been fabricated into organic field effect transistors (OFET) with an unusual bottom contact configuration. The devices display good OFET performance with the carrier mobility for holes in the direction parallel to the aromatic phthalocyanine rings, which shows dependence on the length of the hydrophobic alkoxy side chains, decreasing from 0.46 for 1 to 0.014 cm2 V(-1) s(-1) for 4 along with the increase in the carbon number in the hydrophobic alkoxy side chains.  相似文献   

15.
Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine. The reactions of 1a,b or 2 with Q[AuCl(4)] (2:1) and piperidine or diethylamine gave Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with Q(+) = PPN(+) for R = H [(PPN)6a], Q(+) = PPN(+) or Bu(4)N(+) for R = t-Bu (Q6b), and Q(+) = Bu(4)N(+) for R = OC(8)H(17) [(Bu(4)N)6c]. Complexes Q6a-c reacted with excess triflic acid to give [Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(kappa(2)-S,S-S(2)CCH(C(12)H(6)R(2)-2,7))] [R = H (7a), t-Bu (7b), OC(8)H(17) (7c)]. By reaction of (Bu(4)N)6b with PhICl(2) (1:1) the complex Bu(4)N[AuCl(2)(kappa(2)-S,S-S(2)C=C(C(12)H(6)(t-Bu)(2)-2,7))] [(Bu(4)N)8b] was obtained. The dithioato complexes [Au(SC(S)CH(C(12)H(8)))(PCy(3))] (9) and [Au(n)(S(2)CCH(C(12)H(8)))(n)] (10) were obtained from the reactions of 1a with [AuCl(PCy(3))] or [AuCl(SMe(2))], respectively (1:1), in the absence of a base. Charge-transfer adducts of general composition Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)].1.5TCNQ.xCH(2)Cl(2) [Q(+) = PPN(+), R = H, x = 0 (11a); Q(+) = PPN(+), R = t-Bu, x = 2 (11b); Q(+) = Bu(4)N(+), R = OC(8)H(17), x = 0 (11c)] were obtained from Q6a-c and TCNQ (1:2). The crystal structures of 5c.THF, 5e.(2)/(3)CH(2)Cl(2), 5g.CH(2)Cl(2), (PPN)6a.2Me(2)CO, and 11b were solved by X-ray diffraction studies. All the gold(I) complexes here described are photoluminescent at 77 K, and their emissions can be generally ascribed to LMMCT (Q(2)4a,c, 5a-h, 10) or LMCT (9) excited states.  相似文献   

16.
Fluorine-containing ligands 2,3,5,6-tetrafluoro-1,4-bis(imidazol-1-yl-methyl)benzene (1) and 2,3,5,6-tetrafluoro-1,4-bis(2-methylimidazol-1-yl-methyl)benzene (2) were prepared and coordinated with AgNO3, Co(ClO4)2 x 6 H2O, and Cd(NO3)2 x 4 H2O, respectively, to form the following structures: 3D channel polymer [Ag2(1)2(NO3)2 x H2O x MeOH]n (3), 2D sheet polymer [Co(1)3(ClO4)2]n (4), 1D chain polymer [Cd(1)3(NO3)2 x 4 H2O]n (5), and a 2D herringbone sheet polymer [Ag(2)NO3 x 1.5 MeOH]n (6). The solid-state crystal structures of 3-6 were studied by single-crystal X-ray crystallography.  相似文献   

17.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

18.
The reaction of p-phenylenediamine with excess PCl 3 in the presence of pyridine affords p-C 6H 4[N(PCl 2) 2] 2 ( 1) in good yield. Fluorination of 1 with SbF 3 produces p-C 6H 4[N(PF 2) 2] 2 ( 2). The aminotetra(phosphonites) p-C 6H 4[N{P(OC 6H 4OMe- o) 2} 2] 2 ( 3) and p-C 6H 4[N{P(OMe) 2} 2] 2 ( 4) have been prepared by reacting 1 with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in the presence of triethylamine. The reactions of 3 and 4 with H 2O 2, elemental sulfur, or selenium afforded the tetrachalcogenides, p-C 6H 4[N{P(O)(OC 6H 4OMe- o) 2} 2] 2 ( 5), p-C 6H 4[N{P(S)(OMe) 2} 2] 2 ( 6), and p-C 6H 4[N{P(Se)(OMe) 2} 2] 2 ( 7) in good yield. Reactions of 3 with [M(COD)Cl 2] (M = Pd or Pt) (COD = cycloocta-1,5-diene) resulted in the formation of the chelate complexes, [M 2Cl 4- p-C 6H 4{N{P(OC 6H 4OMe- o) 2} 2} 2] ( 8, M = Pd and 9, M = Pt). The reactions of 3 with 4 equiv of CuX (X = Br and I) produce the tetranuclear complexes, [Cu 4(mu 2-X) 4(NCCH 3) 4- p-C 6H 4{N(P(OC 6H 4OMe- o) 2) 2} 2] ( 10, X = Br; 11, X = I). The molecular structures of 1- 3, 6, 7, and 9- 11 are confirmed by single-crystal X-ray diffraction studies. The weak intermolecular P...P interactions observed in 1 leads to the formation of a 2D sheetlike structure, which is also examined by DFT calculations. The catalytic activity of the Pd(II) 8 has been investigated in Suzuki-Miyaura cross-coupling reactions.  相似文献   

19.
[Tl(OCH2Me)]4 (1) was reacted with excess HOR to prepare a series of [Tl(OR)]n, where OR = OCHMe2 (2, n = 4), OCMe3 (3, n = 4), OCH2CMe3 (4, n = 4), OC6H3(Me)2-2,6 (5, n = infinity), and OC6H3(CHMe2)2-2,6 (6, n = infinity). Single-crystal X-ray diffraction experiments revealed that in the solid state the alkoxide-ligated compound 4 adopts a cubane structure, whereas the aryloxide derivatives, 5 and 6, formed polymeric chains. Compounds 1-6 were also characterized by 203,205Tl solution and 205Tl solid-state NMR spectroscopy. In solution it was determined that 1-4 retained the [Tl-O]4 cube structure, whereas the polymeric species 5 and 6 appeared to be fluxional. Variations in the solution and solid-state structures for the [Tl(OR)]4 cubes and polymeric [Tl(OAr)]infinity are influenced by the steric hindrance of the ligand. The acidity of the parent alcohol influences the degree of covalency at the Tl metal center, which is reflected in the 203,205Tl chemical shifts for 1-6.  相似文献   

20.
以[(bpca)Fe(CN)3]-(bpca=二(2-吡啶羰基)酰胺阴离子)为构筑基元,设计合成了2个新颖的3d-4f异金属配合物,{[(bpca)Fe(CN)3Pr(H2O)5]Cl2}n(1)和{[(bpca)2Fe2(CN)6Pr(H2O)6]Cl·4H2O}n(2),并测定了它们的晶体结构.化合物1的晶体属正交晶系,Pnma空间群;而化合物2属三斜晶系,P1空间群.在这2个化合物中,[(bpca)Fe(CN)3]-和[Pr(H2O)x]3 (1,x=5;2,x=6)交替排列形成一维链状结构,并通过π-π堆积作用、氢键作用及分子间短距离相互作用形成三维网络结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号