首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
气泡线性振动时近海面气泡群的声散射   总被引:1,自引:0,他引:1       下载免费PDF全文
海洋中的不同成因的气泡群是常见的水下声学目标及声呐混响源,因此对水下气泡群进行声学建模意义重大。利用有效媒质理论描述气泡群内部的相速度及声衰减变化,并考虑到海洋中气泡群往往产生于不同界面附近,进一步利用球面波叠加原理描述海面对气泡群散射声波的再辐射,导出了平海面作用下气泡群声散射截面的一般表达式,建立了其声散射模型,研究了单一尺寸及混合尺寸气泡群的声学特性。数值分析表明,气泡群的谐振频率会随其半径或孔隙率增加而降低;由于海面的存在,气泡群声散射截面会随频率进行周期性变化,且随气泡群远离海面,这一变化逐渐加剧。此外,若气泡的黏滞阻尼项在全部阻尼项中占比较高,气泡群声散射强度会在谐振频率附近存在起伏振荡。该模型可为近海面鱼群、气泡羽流及海底泄漏的甲烷气体的声学建模提供一定的理论基础。  相似文献   

2.
The behaviours of insonated bubble clusters are regulated by the secondary Bjerknes force between bubble pairs. While the force has been investigated extensively for two-bubble systems, the modulation of the force by nearby bubbles remains unclear. This problem is investigated in this paper by theoretical analyses and numerical simulations of a three bubble system. For weak oscillations, the third bubble is found to have strong effects when its radius is close to the resonant radius. The equilibrium distance between the bubble pair is reduced when the radius of the third bubble is smaller than the resonant threshold, and increased when it is larger. For strong oscillations of bubbles with radii of a few microns, the third bubble reduces the magnitude of the force, hence increasing the equilibrium distance. The modulation effects depend strongly on the relative sizes of the bubbles. Stronger effects can be produced when the third bubble is placed closer to the smaller bubble in the bubble pair. The findings highlight the need for a more accurate parametrization of the secondary Bjerknes force in the simulation and manipulation of bubble clusters.  相似文献   

3.
球状泡群内气泡的耦合振动   总被引:1,自引:0,他引:1       下载免费PDF全文
王成会  莫润阳  胡静  陈时 《物理学报》2015,64(23):234301-234301
振动气泡形成辐射场影响其他气泡的运动, 故多气泡体系中气泡处于耦合振动状态. 本文在气泡群振动模型的基础上, 考虑气泡间耦合振动的影响, 得到了均匀球状泡群内振动气泡的动力学方程, 以此为基础分析了气泡的非线性声响应特征. 气泡间的耦合振动增加了系统对每个气泡的约束, 降低了气泡的自然共振频率, 增强了气泡的非线性声响应. 随着气泡数密度的增加, 振动气泡受到的抑制增强; 增加液体静压力同样可抑制泡群内气泡的振动, 且存在静压力敏感区(1–2 atm, 1 atm=1.01325×105 Pa); 驱动声波对气泡振动影响很大, 随着声波频率的增加, 能够形成空化影响的气泡尺度范围变窄. 在同样的声条件、泡群尺寸以及气泡内外环境下, 初始半径小于5 μm 的气泡具有较强的声响应. 气泡耦合振动会削弱单个气泡的空化影响, 但可延长多气泡系统空化泡崩溃发生的时间间隔和增大作用范围, 整体空化效应增强.  相似文献   

4.
Models for the acoustic cross-sections of gas bubbles undergoing steady-state pulsation in liquid have existed for some time. This article presents a theoretical scheme for estimating the cross-sections of single bubbles, and bubble clouds, from the start of insonation onward. In this period the presence of transients can significantly alter the cross-section from the steady-state value. The model combines numerical solutions of the Herring-Keller model with appropriate damping values to calculate the extinction cross-section of a bubble as a function of time in response to a continuous harmonic sound field (it is also shown how the model can be adapted to estimate the time-dependent scatter cross-section). The model is then extended to determine the extinction cross-section area of multiple bubbles of varying population distributions assuming no bubble-bubble interactions. The results have shown that the time taken to reach steady state is dependent on the closeness of the bubble to resonance, and on the driving pressure amplitude. In the response of the population as a whole, the time to reach steady state tends to decrease with increasing values of the driving pressure amplitude; and with the increasing values of the ratio of the numbers of bubbles having radii much larger than resonance to the number of resonant bubbles. The implications of these findings for the use of acoustic pulses are explored.  相似文献   

5.
水中浮升气泡的半径和速度变化   总被引:5,自引:0,他引:5  
根据牛顿运动定律推导了小气泡在水中浮升过程中的速度和位置坐标的表达式;基于理想气体物态方程和球形液面的压强差公式推导了小气泡在水中浮升过程中的半径变化率;考虑小气泡在水中浮升过程的气泡半径和速度的变化,用计算机模拟了不同初始条件下的气泡群在浮升过程中半径和位置随时间的变化规律.  相似文献   

6.
胡静  林书玉  王成会  李锦 《物理学报》2013,62(13):134303-134303
从球状泡群气泡动力学方程出发, 考虑泡群间次级声辐射的影响, 得到了声场中两泡群共同存在时气泡振动的动力学方程, 并以此为基础探讨声波驱动下双泡群振动系统的共振响应特征. 由于泡群间气泡间的相互作用, 系统存在低频共振和高频共振现象, 两不同共振频率的数值与泡群内气泡的本征频率相关. 泡群内气泡的本征频率又受到初始半径、泡群大小和泡群内气泡数量的影响. 气泡自由振动和驱动声波的耦合激起泡群内气泡的受迫振动, 气泡初始半径、气泡数密度和驱动声波频率等都会影响泡群内气泡的振动幅值和初相位. 关键词: 气泡群 共振 声响应 超声空化  相似文献   

7.
A two-frequency acoustic apparatus has been developed to study the dynamics of a single gas or vapor bubble in water. An advantage of the apparatus is its capability of trapping a bubble by an ultrasonic standing wave while independently driving it into oscillations by a second lower frequency acoustic wave. For a preliminary application, the apparatus is used to study resonant oscillations. First, near-resonant coupling between the volume and the n = 3 shape oscillation modes of air bubbles at room temperature is studied, where n is the mode number. The stability boundary, amplitude versus frequency, of the volume oscillation forms a wedge centered at the resonant frequency, which qualitatively agrees with a theoretical prediction based on a phase-space analysis. Next, the resonant volume oscillations of vapor bubbles are studied. The resonant radius of vapor bubbles at 80 degrees C driven at 1682 Hz is determined to be 0.7 mm, in agreement with a prediction obtained by numerical simulation.  相似文献   

8.
Gas bubbles in water act as oscillators with a natural frequency inversely proportional to their radius and a quality factor determined by thermal, radiation, and viscous losses. The linear dynamics of spherical bubbles are well understood, but the excitation mechanism leading to sound production at the moment of bubble creation has been the subject of speculation. Experiments and models presented here show that sound from bubbles released from a nozzle can be excited by the rapid decrease in volume accompanying the collapse of the neck of gas which joins the bubble to its parent.  相似文献   

9.
The scattered acoustic pressure and scattered cross section of bubbles is studied using the scattered theory of bubbles. The nonlinear oscillations of bubbles and the scattering acoustic fields of a spherical bubble cluster are numerically simulated based on the bubble dynamic and fluid dynamic. The influences of the interaction between bubbles on scattering acoustic field of bubbles are researched. The results of numerical simulation show that the oscillation phases of bubbles are delayed to a certain extent at different positions in the bubble cluster, but the radii of bubbles during oscillation do not differ too much at different positions. Furthermore, directivity of the acoustic scattering of bubbles is obvious. The scattered acoustic pressures of bubbles are different at the different positions inside and outside of the bubble cluster. The scattering acoustic fields of a spherical bubble cluster depend on the driving pressure amplitude, driving frequency, the equilibrium radii of bubbles, bubble number and the radius of the spherical bubble cluster. These theoretical predictions provide a further understanding of physics behind ultrasonic technique and should be useful for guiding ultrasonic application.  相似文献   

10.
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.  相似文献   

11.
Doinikov AA  Zhao S  Dayton PA 《Ultrasonics》2009,49(2):195-6967
In ultrasonic targeted imaging, specially designed encapsulated microbubbles are used, which are capable of selectively adhering to the target site in the body. A challenging problem is to distinguish the echoes from such adherent agents from echoes produced by freely circulating agents. In the present paper, an equation of radial oscillation for an encapsulated bubble near a plane rigid wall is derived. The equation is then used to simulate the echo from a layer of contrast agents localized on a wall. The echo spectrum of adherent microbubbles is compared to that of free, randomly distributed microbubbles inside a vessel, in order to examine differences between the acoustic responses of free and adherent agents. It is shown that the fundamental spectral component of adherent bubbles is perceptibly stronger than that of free bubbles. This increase is accounted for by a more coherent summation of echoes from adherent agents and the acoustic interaction between the agents and the wall. For cases tested, the increase of the fundamental component caused by the above two effects is on the order of 8-9 dB. Bubble aggregates, which are observed experimentally to form near a wall due to secondary Bjerknes forces, increase the intensity of the fundamental component only if they are formed by bubbles whose radii are well below the resonant radius. If the formation of aggregates contributes to the growth of the fundamental component, the increase can exceed 17 dB. Statistical analysis for the comparison between adhering and free bubbles, performed over random space bubble distributions, gives p-values much smaller than 0.05.  相似文献   

12.
Understanding multiple-bubble behavior in a megasonic field is essential for efficient megasonic nanodevice cleaning without pattern damage. In this study, we numerically studied the effects of equilibrium radius and initial void fraction on multiple-bubble behavior and induced pressure. We analyzed the nonspherical collapse, coalescence, and breakup of bubbles in a megasonic field using a compressible, locally homogeneous model of a gas-liquid two-phase medium. Bubbles were simulated with a uniform equilibrium radius or with a bubble size distribution. Our results indicate that the bubble behavior and induced pressure depended mainly on the initial void fraction. For the case of bubbles with uniform equilibrium radius, small bubbles generated high wall pressure at large initial void fractions. When there was a size distribution, bubbles with small equilibrium radii contributed little to the wall pressure because of the damping effect of the oscillation of larger bubbles. Furthermore, the addition of a large bubble suppressed the resonant behavior of the bubbles that induced high wall pressure.  相似文献   

13.
耦合双泡声空化特性的理论研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王德鑫  那仁满都拉 《物理学报》2018,67(3):37802-037802
当双泡中心间距足够小时,由于气泡间辐射压力波的存在,作用在气泡上的压力不等于外部驱动压力.通过考虑双泡之间的辐射压力波,利用改进的Keller-Miksis方程,分别计算了不同大小、不同间距、含不同惰性气体的双泡在声空化过程中半径的变化、次Bjerknes力的变化和双泡内温度的变化.计算结果表明,当双泡大小不同时,小气泡受到的抑制作用较强,温度变化也比较大.随着双泡间距离从100μm增大到1 cm时,气泡间的次Bjerknes力的数量级从10~(-4)N减小到10~(-8)N.含不同惰性气体的耦合双泡在回弹阶段表现出明显不同的振荡规律.  相似文献   

14.
马艳  林书玉  徐洁  唐一璠 《物理学报》2017,66(1):14302-014302
考虑了非球形气泡在声场中的形状振动,推导了非球形气泡和球形气泡之间的次Bjerknes力方程,数值模拟了声场中非球形气泡和球形气泡之间的次Bjerknes力和两个球形气泡之间的次Bjerknes力,并对非球形气泡和球形气泡之间的次Bjerknes力的影响因素进行了分析讨论.研究结果表明:当驱动声压振幅大于非球形气泡的Black阈值且又能使得非球形气泡稳定振动时,在第一个声驱动周期内,非球形气泡和球形气泡之间的次Bjerknes力和两个球形气泡的次Bjerknes力方向差异较大,在大小上是两个球形气泡次Bjerkens力的数倍,且有着更长的作用距离.非球形气泡和球形气泡之间的次Bjerknes力取决于非球形气泡的形状模态、两个气泡初始半径的比值、驱动声压振幅、气泡间距和两个气泡的相对位置.  相似文献   

15.
《中国物理 B》2021,30(10):104301-104301
The bubble–bubble interaction(BBI) is attractive in most cases, but also could be repulsive. In the present study,three specific mechanisms of repulsive BBI are given. The great contribution to the repulsive BBI is derived from the large radius of the bubble catching the rebound point of the other bubble. For "elastic" bubble and "inelastic" bubble, with the increase of the phase shift between two bubbles, the BBI changes from attractive to repulsive, and the repulsion can be maintained. For both "elastic" bubbles, the BBI alternates between attractive interaction and repulsive interaction along the direction where the ambient radius of one of bubbles increases. For stimulating bubble and stimulated bubble, the BBI can be repulsive. Its property depends on the ambient radii of bubbles. In addition, the distribution of the radiation forces in ambient radius space shows that the BBI is sensitive to the size of bubble and is complex because the bubbles are not of the same size in an ultrasonic field. Finally, as the distance increases or decreases monotonically with time, the absolute value of the BBI decreases or increases, correspondingly. The BBI can oscillate not only in strength but also in polarity when the distance fluctuates with time.  相似文献   

16.
Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.  相似文献   

17.
A theoretical investigation of the forced linear oscillations of a gas microbubble in a blood capillary, whose radius is comparable in size to the bubble radius is presented. The natural frequency of oscillation, the thermal and viscous damping coefficients, the amplitude resonance, the energy resonance, as well as the average energy absorbed by the system, bubble plus vessel, have been computed for different kinds of gas microbubbles, containing air, octafluropropane, and perflurobutane as a function of the bubble radius and applied frequency. It has been found that the bubble behavior is isothermal at low frequencies and for small bubbles and between isothermal and adiabatic for larger bubbles and higher frequencies, with the viscous damping dominating over the thermal damping. Furthermore, the width of the energy resonance is strongly dependent on the bubble size and the natural frequency of oscillation is affected by the presence of the vessel wall and position of the bubble in the vessel. Therefore, the presence of the blood vessel affects the way in which the bubble absorbs energy from the ultrasonic field. The motivation of this study lies in the possibility of using gas microbubbles as an aid to therapeutic focused ultrasound treatments.  相似文献   

18.
《Ultrasonics》1986,24(3):142-147
Nonlinear oscillations of gas bubbles in viscoelastic fluids of a three-constant Oldroyd model are theoretically investigated. The equation of motion for a bubble in a viscoelastic fluid subject to a pulsating pressure, and the pressure equation at the bubble wall are obtained. By numerical calculations on these equations, the effects of relaxation time and retardation time on frequency response curves, and the relation between the maximum pressure at the bubble wall and the initial radius of the bubble are clarified.  相似文献   

19.
含气泡液体中气泡振动的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王勇  林书玉  莫润阳  张小丽 《物理学报》2013,62(13):134304-134304
研究了含气泡液体中单个气泡在驱动声场一定情况下的振动过程. 让每次驱动声场作用的时间特别短, 使气泡半径发生微小变化后再将其变化反馈到气泡群对驱动声场的散射作用中去, 从而可以得到某单个气泡周围受气泡散射影响后的声场, 接着再让气泡在该声场作用下做短时振动, 如此反复. 通过这样的方法, 研究了液体中单个气泡的振动情况并对其半径变化进行了数值模拟, 结果发现, 在液体中含有大量气泡的情况下, 某单个气泡的振动过程明显区别于液体中只有一个气泡的情况. 由于大量气泡和驱动声场的相互作用, 使气泡半径的变化存在多种不同的振动情况, 在不同的气泡大小和含量的情况下, 半径变化过程分别表现为: 在平衡位置附近振荡的过程; 周期性的空化过程; 一次空化过程后保持某一大小振荡的过程; 增长后维持某一大小振荡的过程等. 所以, 对于含气泡液体中气泡振动的研究, 在驱动声场一定的情况下, 必须考虑气泡含量的因素. 关键词: 含气泡液体 超声空化 散射 数值模拟  相似文献   

20.
王成会  程建春 《中国物理 B》2013,22(1):14304-014304
Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号