首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of peptides from a phage display library selected by binding to a given antibody is a widespread technique to probe epitopes of antigenic proteins. However, the identification of interaction sites mimicked by these peptides on the antigen surface is a difficult task. LocaPep is a computer program developed to localize epitopes using a new clusters algorithm that focuses on protein surface properties. The program is constructed with the aim of providing a flexible computational tool for predicting the location of epitopes on protein structures. As a first set of testing results, the localization of epitope regions in eight different antigenic proteins for which experimental data on their antibody interactions exist is correctly identified by LocaPep. These results represent a disparate sample of biologically different systems. The program is freely available at http://atenea.montes.upm.es.  相似文献   

2.
Because synthetic short peptides bearing critical binding residues, can chemically mimic the folded antigenic determinants on proteins, short synthetic peptides can generate antibodies that react with cognate sequences in intact folded proteins. According to this mimotope theory, we produced site-specific antibodies by immunization with short peptides which overlapped each other and covered the entire protein, and used them for domain mapping of influenza virus RNA polymerase (antibody-scanning method). We also used a tagged-epitope and its monoclonal antibodies for topology mapping of clathrin light chains in clathrin triskelions by electron microscopy. Both methods using specific epitopes in combination with their antibodies enable us to determine the domains of interesting proteins systematically without the need to generate monoclonal antibodies or mutant proteins.  相似文献   

3.
Nitroalkanes react specifically with aldehydes, providing rapid, stable, and chemoselective protein bioconjugation. These nitroalkylated proteins mimic key post‐translational modifications (PTMs) of proteins and can be used to understand the role of these PTMs in cellular processes. Demonstrated here is the substrate scope of this bioconjugation by attaching a variety of tags, such as NMR tags, fluorescent tags, affinity tags, and alkyne tags, to proteins. The structure and enzymatic activity of modified proteins remain conserved after labeling. Notably, the nitroalkane group leads to easy characterization of proteins by mass spectrometry because of its distinct fingerprint pattern. Importantly, the nitro‐alkylated peptides provide a new handle for site‐selective fluorination of peptides, thus installing a specific probe to study peptide–protein interactions by 19F NMR spectroscopy. Furthermore, nitroalkane reagents can be used for the late‐stage diversification of peptides and for the synthesis of peptide staples.  相似文献   

4.
A method is described for the elucidation of protein-protein interactions using novel cross-linking reagents and mass spectrometry. The method incorporates (1) a modular solid-phase synthetic strategy for generating the cross-linking reagents, (2) enrichment and digestion of cross-linked proteins using microconcentrators, (3) mass spectrometric analysis of cross-linked peptides, and (4) comprehensive computational analysis of the cross-linking data. This integrated approach has been applied to the study of cross-linking between the components of the heterodimeric protein complex negative cofactor 2.  相似文献   

5.
Peptides and proteins are becoming increasingly valuable as medicines, diagnostic agents and as tools for biomedical sciences. Much of this has been underpinned by the emergence of new methods for the manipulation and augmentation of native biomolecules. Perfluoroaromatic reagents are perhaps one of the most diverse and exciting tools with which to modify peptides and proteins, due principally to their nucleophilic substitution chemistry, high electron deficiency and the ability for their reactivity to be tuned towards specific nucleophiles. As discussed in this minireview, in recent years, perfluoroaromatic reagents have found applications as protecting groups or activating groups in peptide synthesis and as orthogonal handles for peptide modification. Furthermore, they have applications in chemoselective ‘tagging’, stapling and bioconjugation of peptides and proteins, as well as tuning of ‘drug-like’ properties. This review will also explore possible future applications of these reagents in biological chemistry.  相似文献   

6.
多肽和蛋白质的聚乙二醇化修饰方法   总被引:2,自引:0,他引:2  
王良友  刘克良 《有机化学》2003,23(11):1320-1323
聚乙二醇是一类具有独特理化性质的大分子聚合物。多肽和蛋白质类药物经聚 乙二醇共价修饰后能明显改善其药代学和药效学性质,如降低免疫原性、增加对蛋 白水解酶的稳定性、增加水溶性及延长体内的半衰期等。蛋白质的聚乙二醇化修饰 研究已取得较好的效果,多肽的聚乙二醇化修饰研究起步较晚。对近年来多肽和蛋 白质的聚乙二醇化修饰方法进行了综述,主要介绍了对多肽和蛋白质的N端、C端及 某些氨基酸侧链进行选择性聚乙二醇化修饰的方法。  相似文献   

7.
Arginine residues undergo several kinds of post-translational modifications (PTMs). These PTMs are associated with several inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and diabetes. Mass spectrometric studies of arginine modified proteins and peptides are very important, not only to identify the reactive arginine residues but also to understand the tandem mass spectrometry behavior of these peptides for assigning the sequences unambiguously. Herein, we utilize tandem mass spectrometry to report the performance of two widely used arginine labeling reagents, 1,2-cyclohexanedione (CHD) and phenylglyoxal (PG) with several arginine containing peptides and proteins. Time course labeling studies were performed to demonstrate the selectivity of the reagents in proteins or protein digests. Structural studies on the proteins were also explored to better understand the reaction sites and position of arginine residues. We found CHD showed better labeling efficiencies compared to phenylglyoxal. Reactive arginine profiling on a purified albumin protein clearly pointed out the cellular glycation modification site for this protein with high confidence.  相似文献   

8.
The mass spectrometric technique of K+ ionization of desorbed species, K+IDS, is used here to characterize the primary thermal degradation chemistry of small peptides. In this technique, a small amount of a compound is rapidly heated in the condensed phase. Desorption of the intact molecule can occur. Also, thermal degradation products are formed which quickly desorb as well, rather than remain on the surface and undergo subsequent chemistry. The desorbed molecules form adducts with gas phase K+ ions, and a mass spectrum is obtained. Deuterium labeling experiments, and the use of derivatizing reagents, allows for the thermal degradation chemistry of small peptides to be elucidated. Apparently, skeletal bond cleavages are accompanied by H-shifts, although the hydrogen atoms shift from “remote” sites, brought into close proximity with the fragmenting skeletal bond via secondary interactions. Experimental results are presented that allow for correlations between thermal degradation chemistry and the resulting K+IDS mass spectra to be made.  相似文献   

9.
Polypeptide ions comprising different cationizing agents show distinct fragmentation behavior in the gas phase. Thus, it is desirable to be able to form ions with different cationizing agents such as protons and metal ions. Usually, metal-cationized peptide/protein ions are introduced to the mass spectrometer by electrospraying solutions containing a mixture of the peptide/protein of interest and a metal salt. A new technique for generating metal-containing polypeptide ions that involves gas-phase ion/ion reactions is described. In this strategy, solutions of metal-containing ions and solutions of proteins are each electrosprayed into separate ion sources. The approach allows for independent maximization of ion signal and selection of ions prior to gas-phase reactions. Selected ions are stored in a quadrupole ion trap where reactions of ions of opposite polarity form metal-cationized peptides and proteins in the gas phase by cation switching. This approach affords a high degree of flexibility in forming metal-containing peptide and protein ions via the ability to mass-select reactant ions. The ability to form a variety of peptide/protein ions with various cationizing reagents in the gas phase is attractive both for the study of intrinsic interactions of metal ions with polypeptides and for maximizing the structural information available from tandem mass spectrometry of peptides and proteins.  相似文献   

10.
This review gave a brief introduction on recent development in monocyclic and multicyclic peptide mimics of antibodies and provides a perspective on screening and design of multicyclic peptide mimics of antibodies in the future.  相似文献   

11.
Human acquired enamel pellicle is the result of a selective interaction of salivary proteins and peptides with the tooth surface. In the present work, the characterization of the peptides as well as the type of interactions established with the enamel surface was performed. Peptides from in vivo bovine enamel implants in the human oral cavity were sequentially extracted using guanidine and trifluoroacetic acid solutions and the fractions obtained were analysed by LC-MS and LC-MS/MS. Based on the LC-MS data, six phosphorylated peptides were identified in an intact form, strongly adsorbed to the enamel surface. Data from the LC-MS/MS analyses allowed us to identified 30 fragment peptides non-covalently bonded to enamel [basic proline-rich proteins, histatins (1 and 3) and acidic proline-rich protein classes]. The tandem mass spectrometry experiments showed the existence of a pattern of amide bond cleavage for the different identified peptide classes suggesting a selective proteolytic activity. For histatins, a predominance of cleavage at Arg, Lys and His residues was observed, while for basic proline-rich proteins, cleavage at Arg and Pro residues prevailed. In the case of acidic proline-rich proteins, a clearly predominance of cleavage of the Gln-Gly amide bond was evident.  相似文献   

12.
Intrinsically disordered proteins are very common and mediate numerous protein-protein and protein-DNA interactions. While it is clear that these interactions are instrumental for the life of the mammalian cell, there is a paucity of data regarding their molecular binding mechanisms. Here we have used short peptides as a model system for intrinsically disordered proteins. Linear free energy relationships based on rate and equilibrium constants for the binding of these peptides to ordered target proteins, PDZ domains, demonstrate that native side-chain interactions form mainly after the rate-limiting barrier for binding and in a cooperative fashion. This finding suggests that these disordered peptides first form a weak encounter complex with non-native interactions. The data do not support the recent notion that the affinities of intrinsically disordered proteins toward their targets are generally governed by their association rate constants. Instead, we observed the opposite for peptide-PDZ interactions, namely, that changes in K(d) correlate with changes in k(off).  相似文献   

13.
Phosphorylation and sulfation are two important biological modifications present in carbohydrates, proteins, and glycoproteins. Typically, sulfation and phosphorylation cause different biological responses, so differentiating these two functional groups is important for understanding structure/function relationships in proteins, carbohydrates, and metabolites. Since phosphorylated and sulfated compounds are isobaric, their discrimination is not possible in routinely utilized mass spectrometers. Thus, a novel mass spectrometric method to distinguish them has been developed. Herein, we utilize basic peptides as ion-pairing reagents to complex to phosphorylated and sulfated carbohydrates via noncovalent interactions. By performing ESI-MS/MS on the ion-pair complexes, the isobaric compounds can be distinguished. This is the first study demonstrating that ion-pairing can be used for the detection of phosphorylated compounds and the first study to use ion-pairing in conjunction with MS/MS to obtain structural information about the analytes.  相似文献   

14.
Most antigenic sites of proteins, known as discontinuous epitopes, are made up of residues on different loops that are brought together by the folding of the polypeptide chain. The individual loops are sometimes able, on their own, to bind to the antibody and they are then known as continuous epitopes. The binding sites of antibodies, known as paratopes, are built up from residues on six hypervariable loops known as complementarity determining regions (CDRs). Peptides corresponding to individual CDR loops are often able to bind the antigen and such peptides may be viewed as continuous paratopes. Using random combinatorial peptide libraries, it is possible to obtain peptides that bind to an antiprotein antibody without showing any sequence similarity with any part of the protein. Such epitope mimics are called mimotopes provided they are able also to elicit antibodies that react with the original antigen. The binding activity of mimotopes may partly be due to the phenomenon of hydropathic complementarity between epitope and paratope peptides. Although these concepts are vague in their structural connotation, they are useful for describing the immunological activity of linear peptides.  相似文献   

15.
Bioanalysis assays that reliably quantify biotherapeutics and biomarkers in biological samples play pivotal roles in drug discovery and development. Liquid chromatography coupled with mass spectrometry (LC–MS), owing to its superior specificity, faster method development and multiplex capability, has evolved as one of the most important platforms for bioanalysis of biotherapeutics, particularly new scaffolds such as half-life extension platforms for proteins and peptides, as well as antibody drug conjugates. Intact LC–MS analysis is orthogonal to bottom-up surrogate peptide approach by providing whole molecule quantitation and high-level sequence and structure information. Here we review the latest development in LC–MS bioanalysis of intact proteins and peptides by summarizing recent publications and discussing the important topics such as the comparison between top-down intact analysis and bottom-up surrogate peptide approach, as well as simultaneous quantitation and catabolite identification. Key bioanalytical issues around intact protein bioanalysis such as sensitivity, data processing strategies, specificity, sample preparation and LC condition are elaborated. For peptides, topics including quantitation of intact peptide vs. digested surrogate peptide, metabolites, sensitivity, LC condition, assay performance, internal standard and sample preparation are discussed.  相似文献   

16.
Chemical derivatization is often used to enhance the detectability of the target compounds and to improve the separation efficiency in high-performance liquid chromatography (HPLC). In this review, we describe the recent progress in the development of derivatization reagents having a benzofurazan structure, namely, the fluorogenic reagents, water-soluble reagents, reagents for the analysis of peptides and proteins, and reagents for mass spectrometric detection. The application of these reagents to bio-samples is also briefly described.  相似文献   

17.
18.
This paper presents the recently introduced Off-Gel electrophoresis (OGE) technology as a versatile tool to reproducibly fractionate intact proteins and peptides into discrete liquid fractions. The coupling of two stages of OGE, i.e., the separation of intact proteins in a first-stage followed by fractionation of peptides derived from each protein fraction after proteolysis in a second stage, results in an array of 15 x 15 fractions that are directly amenable to additional peptide fractionation like reverse-phase liquid chromatography (RPC). The analysis of all second-stage peptide fractions from only the first-stage protein fraction representing pH 5.0 -5.15 by on-line reverse-phase LC-tandem mass spectrometry resulted in the identification of 53 proteins (337 peptides), of which 10 were on different immunoglobulin (Ig) chains, with an input of only 1.5 mg human blood plasma proteins. Increasing the protein load to approximately 12 mg increased the number of identified proteins in the same protein fraction to 73 proteins (449 peptides), of which 15 were Ig-related. Immunodepletion of six of the most abundant proteins (albumin, transferrin, haptoglobin, IgG, IgA, and alpha-1-antitrypsin) prior to first-stage OGE with an input of 1.5 mg of protein (equivalent to approximately 10 mg nondepleted plasma) resulted in the identification of 81 proteins (660 peptides), of which three were still Ig fragments. The pI-based separation of peptides appears to be nonuniform based on the theoretically determined pI values of identified peptides. This observation specifically accounts for the neutral zone (pI 5-8) and can be accounted for by the physicochemical properties of the peptides given by their amino acid composition. The power of OGE separation of proteins and peptides is discussed with a focus on the use of the knowledge about the pI of proteins and peptides that assist the validation of correct identifications together with the retention time of peptides on RPC.  相似文献   

19.
About 30% of the proteins in mammalian systems are membrane bound or integrated (e.g., GPCRs). It is inherently difficult to investigate receptor-ligand interactions on a molecular level in their natural membrane environment. Here, we present a new method based on saturation transfer difference (STD) NMR to characterize at an atomic level binding interactions of cell surface proteins in living cells. Implemented as a double difference technique, STD NMR allows the direct observation of binding events and the definition of the binding epitopes of ligands. The binding of the pentapeptide cyclo(RGDfV) to the surface glycoprotein integrin alpha(IIb)beta3 of intact human blood platelets can be detected by saturation transfer double difference (STDD) NMR in less than an hour. A 5-fold higher STD response reflects a significantly higher affinity of integrin alpha(IIb)beta3 in native platelets than in liposomes, which demonstrates the importance of studying membrane proteins in their natural environment. Also, the binding mode of cyclo(RGDfV) in the arginine glycine region is slightly different when interacting with native integrin in platelets compared to integrin reintegrated into liposomes.  相似文献   

20.
Patient-specific sequential epitopes were identified by peptide chip analysis using 15mer peptides immobilized on glass slides that covered the topoisomerase IIa protein with a frameshift of five amino acids. Binding specificities of serum antibodies against sequential epitopes were confirmed as being mono-specific by peptide chip re-analysis of epitope-affinity-purified antibody pools. These results demonstrate that serum samples from colon carcinoma patients contain antibodies against sequential epitopes from the topoisomerase IIa antigen. Interactions of patients’ antibodies with sequential epitopes displayed by peptides on glass surfaces may thus mirror disease-specific immune situations. Consequently, these data suggest epitope–antibody reactivities on peptide chips as potential diagnostic readouts of individual immune response characteristics, especially because monospecific antibodies can be interrogated. Subsequently, the clonality of the antibodies present in the mono-specific antibody pools was characterized by 2D gel electrophoresis. This analysis suggested that the affinity-purified antibodies were oligoclonal. Similarly to large-scale screening approaches for specific antigen–antibody interactions in order to improve disease diagnostic, we suggest that “protein-wide” screening for specific epitope–paratope interactions may help to develop novel assays for monitoring of personalized therapies, since individual properties of antigen–antibody interactions remain distinguishable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号