首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high pressure phase transition of lanthanum monotellurides having NaCl-type (B1) structure have been studied using three-body interaction potential (TBIP) approach. The potential model consists of long-range Coulombic, three-body interaction forces, short-range overlap repulsive forces operative up to next nearest neighbor ions, van der Walls interactions and zero point energy effects. To understand the effect of pressure on elastic constant and their combinations, they have also been studied. The Born stability criterion was also found to be fulfiled in the present study. Our calculated results of phase transitions, volume collapses and elastic behavior of these monotellurides are found to be close to the experimental results. This shows that the inclusion of three-body interaction effects makes the present model suitable for high-pressure studies.  相似文献   

2.
The pressure induced phase transition in uranium monochalcogenides, UX (X = S, Se, and Te) is studied by two-body potential approach. It is found that US, USe and UTe undergo a structural phase transition from NaCl (B1) type to CsCl (B2) type at 78.5, 21 and 9.5 GPa, respectively, which is in good agreement with the recent experimental data. In addition, second-order elastic constants (SOECs) (C 11, C 12 and C 14) have been calculated which can be used to establish the nature of the forces in these materials. The present study shows that the considered two-body potential model can be used to predict the phase transition pressure in UX compounds provided the strength and hardness parameters in B1 and B2 phases are different.  相似文献   

3.
The ultra high vacuum chamber was developed in the Department of Nuclear Physics, University of Madras with the funding from DST, India. This UHV chamber is used to prepare nanocrystalline materials by inert gas condensation technique (IGCT). Nanocrystalline materials such as PbF2, Mn2+-doped PbF2, Sn-doped In2O3 (ITO), ZnO, Al2O3, Ag2O, CdO, CuO, ZnSe:ZnO etc., were prepared by this technique and characterized. Results of some of these materials will be presented in this paper. In solid-state207Pb NMR on PbF2 a separate signal due to the presence of grain boundary has been observed. The structural phase transition pressure during the phase transformation from the cubic phase to orthorhombic phase under high pressure shows an increase with the decrease in grain size. Presence of electronic centres in nanocrystalline PbF2 is observed from Raman studies and the same has been confirmed by photoluminescence studies. Al2O3 was prepared and56Fe ions were implanted. After implantation segregation of56Fe ions was examined by SEM. The oxidation properties of ITO were studied by HRTEM. As against the expectation of oxide coating on individual nanograins of In-Sn alloy, ITO nanograins grew into faceted nanograins on heat treatment in air and O2 atmosphere. The growth of ITO under O2 atmosphere showed pentagon symmetry. The PMN was initially prepared by solid-state reaction. Further, this PMN relaxor material will be used to convert into nanocrystalline PMN by IGCT with sputtering and will be studied  相似文献   

4.
In this article, we have investigated the high-pressure structural phase transition of erbium pnictides (ErX; X?=?N, P and As). An extended interaction potential model has been developed (including the zero-point energy effect in three-body interaction potential model). Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses have been predicted successfully. The elastic constants, their combinations and pressure derivatives are also reported. The pressure behaviour of elastic constants, bulk modulus and shear modulus have been presented and discussed. Moreover, the thermophysical properties such as molecular force constant (f), infrared absorption frequency (υ 0), Debye temperature (θ D) and Grunneisen parameter (γ) have also been predicted.  相似文献   

5.
The upconversion properties of Er^3+-doped heavy metal oxyfluoride germanate glasses under 975 nm excitation have been investigated. The intense green (551 and 529 nm) and relatively weak red (657 nm) emissions corresponding to the transitions ^4S3/2→^4I15/2, ^2H11/2→^4 I15/2 and ^4F9/2 →^4I15/2, respectively, were simultaneously observed at room temperature. The content of PbF2 has an important influence on the upconversion luminescence emission. With increasing content of PbF2, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green emission (551 nm) increases markedly. These results suggest that PbF2 has an influence on the green (551 nm) emission more than on the green (529 nm) and red (657 nm) emissions.  相似文献   

6.
Measurements have been made of the transit times τ of pulses of 30 MHz longitudinal and transverse ultrasonic waves in PbF2 at room temperature using hydrostatic pressures up to where the irreversible cubic-to-orthorthombic transformation occurs (near 4 kbar). Above 3 kbar 1/τ no longer increased linearly with pressure and exhibited some time dependence at fixed pressures before echo disappearance. The elastic stiffness moduli showed no significant softening before the transformation began. Length, mass density, and X-ray measurements on samples after they had been returned to 1 bar confirmed that milky white regions in them were orthorhombic but filled with defects.  相似文献   

7.
Er3+-doped oxyfluoride germanate glasses have been synthesized by the conventional melting and quenching method. The Judd-Ofelt intensity parameters were calculated based on the Judd-Ofelt theory and absorption spectra measurements. With the substitution of PbF2 for PbO, the Ω2 parameter decreases, while the Ω6 parameter increases. These change trends indicate that fluoride anions come to coordinate erbium cations and the covalency of the Er-O bond decreases. Structural and thermal stability properties were obtained by Raman spectra and differential thermal analysis, indicating that PbF2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were simultaneously observed at room temperature. With increasing PbF2 content, the intensity of red (657 nm) emissions increases significantly, while that of the green (525 and 546 nm) emission increases slightly. The results indicate that PbF2 has more influence on the red (657 nm) emission than the green (525 and 546 nm) emissions in oxyfluoride germanate glasses. The possible upconversion luminescence mechanisms have also been estimated and discussed.  相似文献   

8.
9.
The method of complete neglect of differential overlap was used to calculate the electronic structure of α PbF2, β PbF2, and PbCl2 crystals which form the basic matrices for the synthesis of new superionic conductors. It was shown that the electronic subsystem is fairly stable on transition from the high-symmetry β PbF2 crystal to the low-symmetry α PbF2. The electronic structure of the cotunnite crystal PbCl2 was calculated for the first time. Fiz. Tverd. Tela (St. Petersburg) 40, 235–236 (February 1998)  相似文献   

10.
In the present paper an analytical potential form is used for overlap repulsive energy, derived by Harrison from quantum mechanical considerations, along with the composite effect of three-body forces and intersublattice displacement. The short-range overlap parameters in Harrison's potential form have direct correlation with the valence state energies for outermost electrons. The potential model is applied to calculate the third and fourth order elastic constants, first and second pressure derivatives of second order elastic constants, Grüneisen parameter and its volume dependence, Anderson parameter, and thermal expansion coefficient for three non-centrosymmetric crystals, viz. CaF2, SrF2 and BaF2. The calculated values of various physical quantities are found to be in good agreement with experimental data.The authors are grateful to Dr. Mansour Khalef, the Head of Physics Department, TNRC, Tajura (Tripoli) for the facilities and encouragements.  相似文献   

11.
We have predicted the phase transition pressures and corresponding relative volume changes of EuO and EuS having NaCl-type structure under high pressure using three-body interaction potential (TBIP) approach. In addition, the conditions for relative stability in terms of modified Born criterion has been checked. Our calculated results of phase transitions, volume collapses and elastic behaviour of these compounds are found to be close to the experimental results. This shows that the inclusion of three-body interaction effects makes the present model suitable for high pressure studies.   相似文献   

12.
A short survey has been made on the extensive work that is being done on the pressure derivatives of the second order elastic constants (SOEC) to ascertain various properties of substances. Hence an attempt has been made to correlate the pressure derivatives to some properties of the substances. Thus some equations have been derived to correlate the Grüneisen parameter which is evaluated from Schofield's equations and Bhatia-Singh's (BS) parameters. They have been used to compute the longitudinal (γgL) and transverse (γgT) Grüneisen constants. γgL calculated by different methods agree well with experiment. γgT obtained from BS parameters gives rather higher value while Schofield's equations give results in agreement with experiment. The DeLaunay-Nath-Smith (DNS) equation has been used to derive a relation to compute γgel (elastic). A method has been extended to calculate the third order elastic constants (TOEC) and it is found to give excellent values of TOECs in agreement with experiment. The absorption band position of TeO2 has been predicted to occur at 276 cm−1. The phonon dispersion curves have been calculated through BS equations for TeO2. Several other properties of TeO2 have been computed such as thermal Grüneisen parameter γgth, its pressure derivatives (γgth)′≡(dγgth/dP), the pressure variation of bulk modulus C1≡(dKT/dP)T and its pressure derivatives that is (dC1/dP)T which is in turn related to (γgth)′, the heat capacity at constant volume CV, and the second Grüneisen constant Q. In some cases we calculated these quantities by different methods and the agreement between them is good. Besides we evaluated δTAG the Anderson Grüneisen parameter. Another important aspect of the present investigations is the formulation of the potential function (PF) of TeO2 from which we calculated SOECs and these are found to be in excellent agreement with experiment. All other properties mentioned already have also been calculated through the use of the newly formulated PF and the calculated values obtained through various other equations are in good agreement with those obtained from PF. According to valence force field (VFF) all atomic forces can be resolved into bond bending β and bond stretching α forces. It is shown that TeO2 does not satisfy Martins unity rule. Hence it is concluded that there is an effective dynamic charge on Te in TeO2. Using the experimental elastic constants the bond bending force β and bond stretching force α and also their pressure derivatives have been evaluated. In addition the reststrauhlen optic frequency ω has been calculated. A self consistent check has been made by evaluating C44 through the calculated values of α and β.  相似文献   

13.
The production and the performance of dielectric multilayer mirrors for Fabry-Perot interferometers from 20000 Å to 2350 Å are described. Details of the evaporation apparatus and techniques are given. The optical data — reflection factor, absorption factor and flatness — are represented graphically and discussed. For all wavelength cryolite served as low refractive material. The high refractive materials used were ZnS for wavelengths from the infrared to λ>4100 Å, Sb2O3 for λ between 4200 Å and 3200 Å and PbF2 for the shorter wavelengths to λ=2350 Å. For PbF2 an exciton-band at 2190 Å has been found.  相似文献   

14.
The pressure dependence of the Young's and shear moduli of RFe2 (R = Sm, Gd, Tb, Dy, Ho and Er) has been determined at room temperature in the pressure range between 0 and 1 GPa The elastic moduli of GdFe2, DyFe2, HoFe2 and ErFe2 show a moderate increase with increasing hydrostatic pressure However, the elastic moduli of SmFe2 and TbFe2 exhibit an initially drastic increase followed by a high, and linear, pressure dependence From the pressure and temperature derivatives of the elastic moduli of these RFe2 Laves phase compounds the equations of state and the Gruneisen parameters have been derived The variation of the elastic properties with hydrostatic pressure is compared with the effect of magnetic fields The anomalous behavior of SmFe2 and TbFe2 is discussed.  相似文献   

15.
罗雰  傅敏  姬广富  陈向荣 《中国物理 B》2010,19(2):27101-027101
The structural, elastic constants and anisotropy of RuB2 under pressure are investigated by first-principles calcula-tions based on the plane wave pseudopotential density functional theory method within the local density approximation (LDA) as well as the generalized gradient approximation (GGA) for exchange and correlation. The results accord well with the available experimental and other theoretical data. The elastic constants, elastic anisotropy, and Debye temperature Θ as a function of pressure are presented. It is concluded that RuB2 is brittle in nature at low pressure, whereas it becomes ductile at higher pressures. An analysis for the calculated elastic constant has been made to reveal the mechanical stability of RuB2 up to 100 GPa.  相似文献   

16.
We have investigated the pressure-induced phase transition of NiO and other structural properties using three-body potential approach. NiO undergoes phase transition from B1 (rocksalt) to B2 (CsCl) structure associated with a sudden collapse in volume showing first-order phase transition. A theoretical study of high pressure phase transition and elastic behaviour in transition metal compounds using a three-body potential caused by the electron shell deformation of the overlapping ion was carried out. The phase transition pressure and other properties predicted by our model is closer to the phase transition pressure predicted by Eto et al.   相似文献   

17.
To study phase transition and elastic properties at high pressures and high temperatures, we have developed a realistic interaction potential model (RIPZpe) including temperature effects. This model is completely suitable for explaining the inter-atomic interaction involved at high temperature and high pressure as it includes the three-body interaction (TBI) and zero point energy effects. The phase transition of KBr crystal at high pressure and high temperatures including the TBI is done for the first time. We have estimated the phase transition pressures, volume collapses and elastic behaviour at various high pressure and high temperatures by RIPZpe approach and the results found are well suited with available experimental data.  相似文献   

18.
崔常喜  左维 《物理学报》2007,56(9):5185-5190
利用Brueckner-Hartree-Fock(BHF)和BCS理论方法,计算了纯中子物质中处于3PF2态的中子对关联能隙,特别是研究并讨论了微观三体核力对3PF2态中子超流性强弱的影响. 结果表明:三体核力显著地增强了中子物质中3PF2态中子超流性;当采用BHF单粒子能谱时,三体核力导致相应的对关联能隙峰值由0.22MeV增大到0.50MeV. 关键词: 中子物质 3PF2超流性')" href="#">3PF2超流性 三体核力 BCS理论  相似文献   

19.
Athermal elasticity for some ceramic materials (α-Al2O3, SiC (α and β phases), TiO2 (rutile and anatase), hexagonal AlN and TiB2, cubic BN and CaF2, and monoclinic ZrO2) have been investigated via density functional theory. Energy-volume equation-of-state computations to obtain the zero pressure equilibrium volume and bulk modulus as well as computations of the full elastic constant tensor of these ceramics at the experimental zero pressure volume have been performed. The present results for the single crystal elasticity are in good agreement with experiments both for the aggregate properties (bulk and shear modulus) and the elastic anisotropy. In contrast, a considerable discrepancy for the zero pressure bulk modulus of some ceramics evaluated from the energy-volume fit to the computational zero pressure volume has been observed.  相似文献   

20.
We have measured the heat capacity, Cp, of PbF2 between 400 K and 800 K using a cubic, fluorite-structure, crystal as well as material recovered in the orthorhombic form at room temperature after a fluorite-structure crystal had been pressurized to 4.5 kbar. Cp of each behaved normally up to somewhat above 600 K. However Cp of the recovered material revealed that orthorhombic PbF2 undergoes a sharp, endothermic, nonreversible transition at T = 633 K, which seems to be a transformation back to the cubic fluorite structure. The Cp of each sample exhibited a λ-like anomaly in the temperature range where a transition to the superionic state is known to occur in cubic PbF2, thus confirming the second order nature suggested for the transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号