首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider the generalized second law of black hole thermodynamics in the light of quantum information theory, in particular information erasure and Landauer’s principle (namely, that erasure of information produces at least the equivalent amount of entropy). A small quantum system outside a black hole in the Hartle-Hawking state is studied, and the quantum system comes into thermal equilibrium with the radiation surrounding the black hole. For this scenario, we present a simple proof of the generalized second law based on quantum relative entropy. We then analyze the corresponding information erasure process, and confirm our proof of the generalized second law by applying Landauer’s principle.  相似文献   

2.
We focus the problem of establishing when a statistical mechanics system is determined by its free energy. A lattice system, modelled by a directed and weighted graph (whose vertices are the spins and its adjacency matrix M will be given by the system transition rules), is considered. For a matrix A(q), depending on the system interactions, with entries which are in the ring Z[a q :aR +] and such that A(0) equals the integral matrix M, the system free energy β A (q) will be defined as the spectral radius of A(q). This kind of free energy will be related with that normally introduced in Statistical Mechanics as proportional to the logarithm of the partition function. Then we analyze under what conditions the following statement could be valid: if two systems have respectively matrices A,B and β A = β B then the matrices are equivalent in some sense. Issues of this nature receive the name of rigidity problems. Our scheme, for finite interactions, closely follows that developed, within a dynamical context, by Pollicott and Weiss but now emphasizing their statistical mechanics aspects and including a classification for Gibbs states associated to matrices A(q). Since this procedure is not applicable for infinite range interactions, we discuss a way to obtain also some rigidity results for long range potentials.  相似文献   

3.
McKean and Vaninsky proved that the canonical measuree H d Q d P based upon the Hamiltonian of the wave equation 2 Q/t 2 - 2 Q/x 2 +f(Q) = 0 with restoring forcef(Q)=F'(Q) is preserved by the associated flow ofQ andP =Q , and they conjectured that metric transitivity prevails,always on the whole line, and likewise on the circleunless f(Q)=Q orf(Q)=shQ. Here, the metric transitivity is proved for the whole line in the second case. The proof employs the beautiful d'Alembert formula of Krichever.  相似文献   

4.
No Heading In this paper the spin-echo experiment is examined in the light of three different approaches to statistical mechanics: the coarse-graining Gibbsian approach, the interventionist Gibbsian approach, and the Boltzmannian approach. The conclusions of this examination are almost exactly opposite to the conclusions of Ridderbos and Redhead [1]: Firstly, it is argued that the spin-echo experiment does not tell against a coarse-graining approach to statistical mechanics. Secondly, it is argued that the interventionist approach to statistical mechanics is itself somewhat problematic as its statistical mechanical counterpart of thermodynamic entropy has a number of properties that actual thermodynamic entropy seemingly does not. In the final section of this paper a feature of coarse-grained entropies (their relativity) is noted that may enable coarse-graining approaches to reconcile conflicting intuitions about the behaviour of entropy in the spin-echo experiment, which may be considered a further advantage of such approaches.  相似文献   

5.
Ensemble predictions are an integral part of routine weather and climate prediction because of the sensitivity of such projections to the specification of the initial state. In many discussions it is tacitly assumed that ensembles are equivalent to probability distribution functions (p.d.f.s) of the random variables of interest. In general for vector valued random variables this is not the case (not even approximately) since practical ensembles do not adequately sample the high dimensional state spaces of dynamical systems of practical relevance. In this contribution we place these ideas on a rigorous footing using concepts derived from Bayesian analysis and information theory. In particular we show that ensembles must imply a coarse graining of state space and that this coarse graining implies loss of information relative to the converged p.d.f. To cope with the needed coarse graining in the context of practical applications, we introduce a hierarchy of entropic functionals. These measure the information content of multivariate marginal distributions of increasing order. For fully converged distributions (i.e. p.d.f.s) these functionals form a strictly ordered hierarchy. As one proceeds up the hierarchy with ensembles instead however, increasingly coarser partitions are required by the functionals which implies that the strict ordering of the p.d.f. based functionals breaks down. This breakdown is symptomatic of the necessarily limited sampling by practical ensembles of high dimensional state spaces and is unavoidable for most practical applications.

In the second part of the paper the theoretical machinery developed above is applied to the practical problem of mid-latitude weather prediction. We show that the functionals derived in the first part all decline essentially linearly with time and there appears in fact to be a fairly well defined cut off time (roughly 45 days for the model analyzed) beyond which initial condition information is unimportant to statistical prediction.  相似文献   


6.
In the context of Markov processes, both in discrete and continuous setting, we show a general relation between duality functions and symmetries of the generator. If the generator can be written in the form of a Hamiltonian of a quantum spin system, then the “hidden” symmetries are easily derived. We illustrate our approach in processes of symmetric exclusion type, in which the symmetry is of SU(2) type, as well as for the Kipnis-Marchioro-Presutti (KMP) model for which we unveil its SU(1,1) symmetry. The KMP model is in turn an instantaneous thermalization limit of the energy process associated to a large family of models of interacting diffusions, which we call Brownian energy process (BEP) and which all possess the SU(1,1) symmetry. We treat in details the case where the system is in contact with reservoirs and the dual process becomes absorbing.  相似文献   

7.
This is the first of several papers dealing with the application of statistical thermodynamic methodology to the solution of coding and communication theory problems. Emphasis is placed on the various ensemble techniques of statistical mechanics, the words or samples of a message taking the place of molecules in the prototype physical system. Analogs of temperature, internal energy, pressure, chemical potential, volume, entropy, etc., are developed. The isomorphism with thermodynamics is complete and these quantities transform (for example, by partial differentiation) in exactly the same way as the prototype physical quantities. The methods are nicely applicable to coding cases involving sources with memory, in which case, correlation can be discussed in terms of analog coupling energies between signals or words so that the store of many-body-problem techniques can be used. In addition, the manipulative freedom stemming from the possibility of choosing from a multiplicity of ensembles constrained by intensive parameters proves a distinct advantage. A concrete example dealing with the choice of a compact code for a nonextended source with memory is presented. The compact code is derived, and some discussion is given concerning the breadth of its power spectrum. In a following paper, its autocorrelation function within the framework of pulse code modulation is derived and transformed by Wiener theory so that the power spectrum is directly exhibited (along with the spectra for several other cases).Research supported under AFOSR Grant No. 70-1877. The present work is contribution No. 2643 of the Department of Chemistry, University of California-Los Angeles.  相似文献   

8.
We introduce a two-party communication complexity problem in which the probability of success by using a particular strategy allows the parties to detect with certainty whether or not some forbidden communication has taken place. We show that theprobability of success is bounded by nature; any conceivable method which gives a probability of success outside these bounds is impossible. Moreover, any conceivable method to solve the problem which gives a probability success within these bounds is possible in nature. This example suggests that a suitaby chosen set of communication complexity problems could be the basis of an information-theoretic axiomatization of quantum mechanics.  相似文献   

9.
This paper reviews various applications of the theory of smooth dynamical systems to conceptual problems of nonequilibrium statistical mecanics. We adopt a new point of view which has emerged progressively in recent years, and which takes seriously into account the chaotic character of the microscopic time evolution. The emphasis is on nonequilibrium steady states rather than the traditional approach to equilibrium point of view of Boltzmann. The nonequilibrium steady states, in presence of a Gaussian thermostat, are described by SRB measures. In terms of these one can prove the Gallavotti–Cohen fluctuation theorem. One can also prove a general linear response formula and study its consequences, which are not restricted to near-equilibrium situations. At equilibrium one recovers in particular the Onsager reciprocity relations. Under suitable conditions the nonequilibrium steady states satisfy the pairing theorem of Dettmann and Morriss. The results just mentioned hold so far only for classical systems; they do not involve large size, i.e., they hold without a thermodynamic limit.  相似文献   

10.
We compare and contrast three different, but complementary views of “structure” and “pattern” in spatial processes. For definiteness and analytical clarity, we apply all three approaches to the simplest class of spatial processes: one-dimensional Ising spin systems with finite-range interactions. These noncritical systems are well-suited for this study since the change in structure as a function of system parameters is more subtle than that found in critical systems where, at a phase transition, many observables diverge, thereby making the detection of change in structure obvious. This survey demonstrates that the measures of pattern from information theory and computational mechanics differ from known thermodynamic and statistical mechanical functions. Moreover, they capture important structural features that are otherwise missed. In particular, a type of mutual information called the excess entropy—an information theoretic measure of memory—serves to detect ordered, low entropy density patterns. It is superior in several respects to other functions used to probe structure, such as magnetization and structure factors. ϵ-Machines—the main objects of computational mechanics—are seen to be the most direct approach to revealing the (group and semigroup) symmetries possessed by the spatial patterns and to estimating the minimum amount of memory required to reproduce the configuration ensemble, a quantity known as the statistical complexity. Finally, we argue that the information theoretic and computational mechanical analyses of spatial patterns capture the intrinsic computational capabilities embedded in spin systems—how they store, transmit, and manipulate configurational information to produce spatial structure.  相似文献   

11.
根据等照度线曲率在图像表征中的重要意义,将曲率作为一个控制传导率的因素引入非线性扩散方程,提出了一个新的曲率驱动与边缘停止相结合的非线性扩散模型,实验结果表明这一模型在图像去噪方面较经典的P-M方程具有更好的性能.  相似文献   

12.
We review and further develop a mathematical framework for non-equilibrium quantum statistical mechanics recently proposed in refs. 1–7. In the algebraic formalism of quantum statistical mechanics we introduce notions of non-equilibrium steady states, entropy production and heat fluxes, and study their properties. Our basic paradigm is a model of a small (finite) quantum system coupled to several independent thermal reservoirs. We exhibit examples of such systems which have strictly positive entropy production.  相似文献   

13.
A foundation of quantum mechanics based on the concepts of focusing and symmetry is proposed. Focusing is connected to c-variables—inaccessible conceptually derived variables; several examples of such variables are given. The focus is then on a maximal accessible parameter, a function of the common c-variable. Symmetry is introduced via a group acting on the c-variable. From this, the Hilbert space is constructed and state vectors and operators are given a definite interpretation. The Born formula is proved from weak assumptions, and from this the usual rules of quantum mechanics are derived. Several paradoxes and other issues of quantum theory are discussed.  相似文献   

14.
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.  相似文献   

15.
Several classical problems in symbolic dynamics concern the characterization of the simplex of measures of maximal entropy. For subshifts of finite type in higher dimensions, methods of statistical mechanics are ideal for dealing with these problems. R. Burton and J. Steif developed a strategy to construct examples of strongly irreducible subshifts of finite type admitting several measures of maximal entropy. This strategy exploits a correspondence between equilibrium statistical mechanics and symbolic dynamics—a correspondence which was later formalized by O. Häggström. In this paper, we revisit and discuss this correspondence with the aim of presenting a simplified version of it and present some applications of rigorous results concerning the Potts model and the six-vertex model to symbolic dynamics, illustrating in this way the possibilities of this correspondence.  相似文献   

16.
17.
Vimla Vyas 《Pramana》2008,70(4):731-738
Speeds of sound and densities of three ternary liquid systems namely, toluene + n-heptane + n-hexane (I), cyclohexane + n-heptane + n-hexane (II) and n-hexane + n-heptane + n-decane (III) have been measured as a function of the composition at 298.15 K at atmospheric pressure. The experimental isothermal compressibility has been evaluated from measured values of speeds of sound and density. The isothermal compressibility of these mixtures has also been computed theoretically using different models for hard sphere equations of state and Flory’s statistical theory. Computed values of isothermal compressibility have been compared with experimental findings. A satisfactory agreement has been observed. The superiority of Flory’s statistical theory has been established quite reasonably over hard sphere models.   相似文献   

18.
The standard axiomatization of quantum mechanics (QM) is not fully explicit about the role of the time-parameter. Especially, the time reference within the probability algorithm (the Born Rule, BR) is unclear. From a probability principle P1 and a second principle P2 affording a most natural way to make BR precise, a logical conflict with the standard expression for the completeness of QM can be derived. Rejecting P1 is implausible. Rejecting P2 leads to unphysical results and to a conflict with a generalization of P2, a principle P3. All three principles are shown to be without alternative. It is thus shown that the standard expression of QM completeness must be revised. An absolutely explicit form of the axioms is provided, including a precise form of the projection postulate. An appropriate expression for QM completeness, reflecting the restrictions of the Gleason and Kochen-Specker theorems is proposed.  相似文献   

19.
20.
We consider the role information energy can play as a source of dark energy. Firstly, we note that if stars and structure had not formed in the universe, elemental bits of information describing the attributes of particles would have exhibited properties similar to the cosmological constant. The Landauer equivalent energy of such elemental bits would be defined in form and value identical to the characteristic energy of the cosmological constant. However, with the formation of stars and structure, stellar heated gas and dust now provide the dominant contribution to information energy with the characteristics of a dynamic, transitional, dark energy. At low redshift, z < ~1.35, this dark energy emulates the cosmological constant with a near-constant energy density, w = −1.03 ± 0.05, and an energy total similar to the mc2 of the universe’s ∼1053 kg of baryons. At earlier times, z > ~1.35, information energy was phantom, differing from the cosmological constant, Λ, with a CPL parameter difference of ∆wo = −0.03 ± 0.05 and ∆wa = −0.79 ± 0.08, values sufficient to account for the H0 tension. Information dark energy agrees with most phenomena as well as Λ, while exhibiting characteristics that resolve many tensions and problems of ΛCDM: the cosmological constant problem; the cosmological coincidence problem; the H0 tension, and the σ8 tension. As this proposed dark energy source is not usually considered, we identify the expected signature in H(a) that will enable the role of information dark energy to be falsified by experimental observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号