首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new interface for the on-line coupling of a liquid chromatograph to a stable isotope ratio mass spectrometer has been developed and tested. The interface is usable for (13)C/(12)C determination of organic compounds, allowing measurement of small changes in (13)C abundance in individual analyte species. All of the carbon in each analyte is quantitatively converted into CO(2) while the analyte is still dissolved in the aqueous liquid phase. This is accomplished by an oxidizing agent such as ammonium peroxodisulfate. The CO(2) is separated from the liquid phase and transferred to the mass spectrometer. It is shown that the whole integrated process does not introduce isotope fractionation. The measured carbon isotope ratios are accurate and reproducible. The sensitivity of the complete system allows isotope ratio determination down to 400 ng of compound on-column. By-passing the high-performance liquid chromatography (HPLC) separation allows bulk isotopic analysis with substantially lower sample amounts than those required by conventional elemental analyzers. The results of the first applications to amino acids, carbohydrates, and drugs, eluted from various types of HPLC columns, are presented. The wide range of chromatographic methods enables the analysis of compounds never before amenable to isotope ratio mass spectrometry techniques and may lead to the development of many new assays.  相似文献   

2.
A modified aerospray apparatus was used to prepare a thin layer sample of matrix and analyte for quantitative analysis by MALDI-TOFMS. The apparatus consists of a set of coaxial tubing; the liquid sample is forced by a syringe pump through the inner capillary and it is nebulized by a flow of gas through the outer capillary. The small droplets of sample exiting the device are deposited onto a rotating plate, which serves as the sample surface for a time-of-flight mass spectrometer. An optimization was carried out after initial experiments with the device resulted in poorer than expected reproducibility of analyte signal. A two-level plus center point factorial experiment was performed investigating several factors, including the inner capillary internal diameter, gas pressure, liquid flow, spray distance, and time. After optimization the within-sample reproducibility of the analyte signal improved 3-fold, while the sample-to-sample reproducibility improved 4.5-fold.  相似文献   

3.
This paper presents a novel splitting method for liquid chromatography/mass spectrometry (LC/MS) application, which allows fast MS detection of LC-separated analytes and subsequent online analyte collection. In this approach, a PEEK capillary tube with a micro-orifice drilled on the tube side wall is used to connect with LC column. A small portion of LC eluent emerging from the orifice can be directly ionized by desorption electrospray ionization (DESI) with negligible time delay (6~10 ms) while the remaining analytes exiting the tube outlet can be collected. The DESI-MS analysis of eluted compounds shows narrow peaks and high sensitivity because of the extremely small dead volume of the orifice used for LC eluent splitting (as low as 4 nL) and the freedom to choose favorable DESI spray solvent. In addition, online derivatization using reactive DESI is possible for supercharging proteins and for enhancing their signals without introducing extra dead volume. Unlike UV detector used in traditional preparative LC experiments, this method is applicable to compounds without chromophores (e.g., saccharides) due to the use of MS detector. Furthermore, this splitting method well suits monolithic column-based ultra-fast LC separation at a high elution flow rate of 4 mL/min.
Figure
?  相似文献   

4.
A crucial step in the isolation of antibiotic substances is establishing whether or not the isolated material represents a new chemical entity. Because of the importance of molecular weight to this process--known as dereplication--mass spectrometry has traditionally played an active role. In this communication a strategy for utilizing liquid chromatography-mass spectrometry (LC/MS) for novelty assessment is described. Crude extracts (20-50 μg) are chromatographed by conventional bore high-performance liquid chromatography (1 mL/min) after which a postcolumn split to divert roughly one-tenth of the sample to the mass spectrometer for molecular weight determination by electrospray ionization (ESI) mass spectrometry. The majority of the effluent is sent to a UV detector and ultimately collected as 1-min fractions for biological testing. As a secondary confirmation of molecular weight, an aliquot of each fraction (< 5%) is taken for analysis by matrix-assisted laser desorption ionization (MALDI). The improved efficiency of this approach over more traditional schemes utilizing off-line fraction collection and conventional ionization methods can be explained by several factors. First, the superior sensitivity of ESI and MALDI means that less material is required for successful analysis. Second, on-line LC/MS optimizes the efficiency of sample transfer and saves both time and labor. Furthermore, the concentration dependence of ESI allows a majority of the material injected for LC/MS to be recovered for biological testing without compromising the signal available for molecular weight determination. As a validation of the above method, crude extracts containing two well-characterized antibiotics--teicoplanin and phenelfamycin--were examined. Results from these analyses are presented along with data from the analysis of a potent unknown antifungal sample.  相似文献   

5.
The novel application of a UV epifluorescence microscope as an imaging detector for microbore and capillary high-performance liquid chromatography (HPLC) is reported. The microscope is focused on an in-line quartz flow cell incorporated down stream of a microbore HPLC column or directly on an optically clear portion of fused-silica capillary columns for analyte detection. The effect of different fluorescent ligand to analyte ratios on detection limits is also reported, as well as the effect of different image volume sizes produced by changes in microscope objective lens magnification power. Determination of relative sensitivities an detection limits for methyl- and butyltin compounds, complexed with fluorescent dyes, reveals that the organotins show decreasing sensitivity as the number of alkyl substituents on the tin atom increases, with minimum detectable amounts of 6-160 pg of analyte-ligand complex.  相似文献   

6.
A maximum-seeking, algorithm-driven fraction collection method was developed to support high-throughput chromatographic purification, which provides new possibilities for off-line high-performance liquid chromatography mass spectroscopy (HPLC/MS) quality control experiments. The method is based on manipulation of a six-port valve that is installed downstream from the UV detector and equipped with a fraction collector loop. The detector signal is monitored by a programmable microcontroller that controls the state of the fraction collector valve. After detecting a chromatographic peak, the appropriate fraction is stored in the collector loop. The height of the next peak is compared to the previous one (using a maximum-seeking algorithm) and, depending on the result, the collected fraction is or is not exchanged with the new one. At the end of the run, the stored UV main component is pumped into the external fraction vial. This configuration was used for chromatographic purification of large compound libraries (the results of the purification of 5324 compounds are reported here), as well as for high-throughput off-line HPLC quality control experiments, where the collected main component fractions of an analytical-scale separation were subjected to further mass spectrometric molecular weight verification.  相似文献   

7.
A semipreparative HPLC setup was evaluated for automated fractionation with both photometric- and mass spectrometric trigger. The goals of the work were to systematically study and optimize the flow-splitting setup for mass-directed purifications by mathematical modeling and experimental verification. The system comprised a passive splitting device with make-up flow capability, which directed a small fraction of the column effluent to the mass spectrometer and the remainder to the fraction collector. Tubing lengths and diameters of the splitter as well as make-up flow rates were varied in order to address and optimize peak dispersion, delay times between mass detector and fraction collector, and mass spectrometric signal quality. A paraben standard mixture was analyzed and purified on both microparticulate and monolithic columns with 10 mm inner diameter and at typical flow rates of 5-10 mL/min. Fraction purities and recoveries close to 100% were achieved. The system allowed mass-triggered fractionations on a 1 mg scale at flow rates of 10 mL/min in combination with monolithic columns in less than 2 min. Finally, the system was successfully applied to the fully automated isolation of milligram quantities of degradation products in a pharmaceutical preparation to successfully allow for structure elucidation with NMR spectroscopy.  相似文献   

8.
'Accurate mass' measurements in electrospray mass spectrometry are becoming more prevalent with the increasing availability of mass spectrometers with sufficient resolution. A reference compound is ideally admitted separately but almost simultaneously with the analyte and this is achieved by use of a 'dual sprayer' or voltage switching between reference and sample sprayers. This paper describes a novel third method, relying on cavitation (segmentation) of the liquid stream containing the reference compound, allowing the sample to ionise independently from the sample, thus preventing interference. The technique may also find application in kinetic experiments, such as protein folding studies. A high-performance liquid chromatography (HPLC) injector was also used to provide a reference compound, producing Gaussian-shaped profiles of varying ion intensity, thus allowing easier selection of a desirable measurement point where the intensities of the reference and analyte were similar.  相似文献   

9.
Recently developed new techniques of ion formation from organic solids may become very useful in the application of mass spectrometers as detector units in liquid chromatography. Details of a liquid chromatograph mass spectrometer coupling device are presented. Some features of this device, combined with a quadrupole secondary ion mass spectrometer, are demonstrated experimentally by the analysis of aqueous solutions of leucine and cytosine. It is demonstrated that the sensitivity of the liquid chromatography secondary ion mass spectrometry combination covers the concentration range occurring in liquid chromatography.  相似文献   

10.
Cyclodextrins (CDs) are widely used in the pharmaceutical industry for their capability of improving bioavailability, solubility, or stability of drugs via the formation of soluble inclusion complexes. CDs have also been widely used in various chemical analysis methods. In this work, liquid chromatography/electrospray mass spectrometry (LC/ESI-MS) analysis for four different drugs (imipramine, desipramine, propranolol, and naproxen) that form inclusion complexes with CDs was performed in the presence and absence of beta-CD. These drugs are subject to nonspecific adsorption when brought into contact with plastics, such as HPLC tubing, sample collection and preparation apparatus, etc. Inclusion of the CD in the samples reduces this nonspecific adsorption due to competitive complex formation between the CD and the analyte. ESI-MS ion intensities increased when beta-CD was included in the sample with concentrations up to 1% (w:v), with a diverter valve installed post LC column. The degree of increased ion signal correlated with the beta-cyclodextrin:analyte binding constant. beta-CD appeared to elute within the void volume time and was observed in a full spectrum scan among the different analyte samples with up to 0.01% beta-CD injected directly to the LC/MS system with the diverter valve switched inline with the mass spectrometer. The use of the diverter valve allowed for direct injection of samples containing up to 1% beta-CD to the LC/MS without any deterioration of analyte ion signal.  相似文献   

11.
High-throughput chemistry (HTC) is now an integral part of the lead discovery process in many pharmaceutical and related chemical companies. As this process becomes refined or improved, with the integration of systems with enhanced capabilities, and the requirement for quality compounds of high purity increases, purification is often considered a bottleneck. Although a wide range of purification techniques is available, high-performance liquid chromatography (HPLC) is usually the preferred method of purification to produce high-purity compounds. Parallel preparative HPLC with robust UV-guided fraction collection has been shown to reduce the bottleneck and complement the parallel synthesis systems. However, despite the success of this technique, post-purification analysis of fractions to identify the target compound adds an additional level of complexity. This paper describes the interfacing of the Biotage Parallex with the MUX interface on a single quadrupole mass spectrometer, thus combining robust UV-guided fractionation with on-line MS characterization.  相似文献   

12.
A sensitive, efficient, high throughput, direct injection bioanalytical method based on a single column and high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) was developed for pharmacokinetic analysis of early drug discovery compounds in plasma samples. After mixing with a working solution containing an internal standard each plasma sample was directly injected into a polymer-coated mixed-function column for sample cleanup, enrichment and chromatographic separation. The stationary phase incorporates hydrophilic polyoxyethylene groups and hydrophobic groups to the polymer-coated silica. This allows proteins and macromolecules to pass through the column due to restricted access to the surface of the packing while retaining the drug molecules on the bonded hydrophobic phase. The analytes retained in the column with a largely aqueous liquid mobile phase were then chemically separated by switching to a strong organic mobile phase. The column effluent was diverted from waste to the mass spectrometer for analyte detection. Within 200 plasma sample injections the response ratio (analyte vs. internal standard, %CV = 4.6) and the retention times for analyte and internal standard were found consistent and no column deterioration was observed. The recoveries of test compound in various plasma samples were greater than 90%. The total analysis time was 相似文献   

13.
An automated packed-column semi-preparative supercritical fluid chromatography/mass spectrometry (SFC/MS) system incorporating mass-directed fraction collection has been designed and implemented as an alternative to preparative HPLC and preparative HPLC/MS (PrepLC/MS) for the purification of pharmaceutical compounds. The system incorporates a single quadrupole mass spectrometer and a supercritical fluid chromatograph. Separations were achieved using a binary solvent system consisting of carbon dioxide and methanol. Purification of SFC-separated compounds was achieved incorporating mass-directed fraction collection, enabling selective isolation of the target molecular weight compound and eliminating the collection of undesired compounds (e.g., by-products, excess starting materials, etc.). Cross contamination between fractions and recoveries of the system were investigated. Mass spectrometer ionization with basic mobile additives is discussed, and examples of preparative SFC/MS chiral separations are presented. Early experiences suggest SFC will be a powerful and complementary technique to HPLC for the purification of pharmaceutical compounds.  相似文献   

14.
A novel interface that allows normal-phase liquid chromatography to be coupled with electrospray ionization (ESI) is reported. A make-up solution of 60 mM ammonium acetate in methanol, infused at a 5 microl min(-1) flow-rate at the tip of the electrospray probe, provides a sheath liquid which is poorly miscible with the chromatographic effluent, but promotes efficient ionization of the targeted analytes. Protonated molecules generated in the ESI source were subjected to tandem mass spectrometric experiments in a triple-quadrupole mass spectrometer. The main fragmentation reactions were characterized for each analyte and specific mass spectral transitions were used to acquire chromatographic data in the multiple reaction monitoring detection mode. Results obtained during optimization of the sheath liquid composition and flow-rate suggest that the electrospray process was mainly under the control of the make-up solution, and that it forms an external charged layer around a neutral chromatographic mobile phase core. This sheath liquid interface was implemented for the analysis of some neoflavonoid compounds and its performance was evaluated. Limits of detection were established for calophillolide, inophyllum B, inophyllum P and inophyllum C at 100, 25, 15 and 100 ng ml(-1), respectively.  相似文献   

15.
A new parallel liquid chromatography/tandem mass spectrometry (LC/MS/MS) system has been developed, in which the mass detector was shared between two staggered parallel chromatographic runs. Since the chromatography for biofluids assay generally requires good analyte retention and thus tends to leave large blank chromatographic windows, this parallel system allowed the efficient use of the mass detector during these blank windows, resulting in significantly improved sample throughput. Also, in order to remove the bottleneck in sample extraction for this parallel separation system, a high-flow extraction device was used to perform on-line extraction. This allowed for the direct injection of biofluids onto the system. The performance and capability of this system was evaluated in tests that contained a single analyte (oxazepam) and multiple analytes (12-in-1). The results indicated that the data generated from this system were comparable to those obtained on a conventional single-column system. An application of the system for high-throughput pharmacokinetic screening of drug candidates was also demonstrated.  相似文献   

16.
The bronchosecretolytic drug ambroxol can be reliably quantified in human plasma by high performance liquid chromatography. Plasma is buffered alkaline, extracted with ether, and the organic solvent back-extracted with diluted acid. An automatically sampled aliquot is separated by reversed phase HPLC; the analyte is well separated from two metabolites that interfered strongly in earlier methods. UV detection at 230 nm enables a lower limit of quantitation of 5 ng/ml. Internal standardization with propranolol allows accurate and precise quantification. Evaluation of the optimized combination of mobile and stationary phase is described, and application of the method to experimental and clinical pharmacokinetic studies is illustrated.  相似文献   

17.
We report a microchip-based detection scheme to determine the diffusion coefficient and molecular mass (to the extent correlated to molecular size) of analytes of interest. The device works by simultaneously measuring the refractive index gradient (RIG) between adjacent laminar flows at two different positions along a microchannel. The device, referred to as a microscale molecular mass sensor (micro-MMS), takes advantage of laminar flow conditions where the mixing of two streams occurs essentially by diffusion across the boundary between the two streams. Two flows merge on the microchip, one containing solvent only, referred to as the mobile phase stream and one which contains the analyte(s) of interest in the solvent, i.e. the sample stream. As these two streams merge and flow parallel to each other down the microchannel a RIG is created by the concentration gradient. The RIG is further influenced by analyte diffusion from the sample stream into the mobile phase stream. Measuring the RIG at a position close to the merging point (upstream signal) and simultaneously a selected distance further down the microchannel (downstream signal) provides real-time data related to the extent a given analyte has diffused, which can be readily correlated to analyte molecular mass by taking the ratio of the downstream-to-upstream signals. For the dual-beam RIG measurements, a diode laser output is coupled to a single mode fiber optic splitter with two output fibers. Light from each fiber passes through a graded refractive index (GRIN) lens forming a collimated beam that then passes through the microchannel and then on to a position sensitive detector (PSD). The RIG at both detection positions deflects the two collimated probe beams. The deflection angle of each beam is then measured on two separate PSDs. The micro-MMS was evaluated using polyethylene glycols (PEGs), sugars, and as a detector for size-exclusion chromatography (SEC). Peak purity can be readily identified using the micro-MMS with SEC. The limit of detection was 0.9 ppm (PEG at 11 840 g/mol) at the upstream detection position corresponding to a RI limit of detection (LOD) (3sigma) of 7-10(-8) RI. The pathlength for the RIG measurement was 200 microm and the angular LOD was 0.23 micro(rad) with a detection volume of 8 nl at both positions. The average molecular mass resolution was 9% (relative standard deviation) for a series of PEGs ranging in molecular mass from 106 to 22 800 g/mol. With this excellent mass resolution, small molecules such as monosaccharides, disaccharides, and so on, are readily distinguished. The sensor is demonstrated to readily determine unknown diffusion coefficients.  相似文献   

18.
Abstract

A rapid method has been developed for the quantitation of steroid metabolites resulting from the incubation of specific gonadal cell types or gonadal tissue with radioactive precursors. The method involves the use of high performance liquid chromatography (HPLC) for separating the steroids and a flow-through radioactive detector (Flo-One HP) for quantitating the radioactive 3H precursor and metabolites in the presence or absence of 14C-steroid recovery tracers. A comparison is made between the results obtained directly by the Flo-One HP radioactivity detector and the fraction collection method, (counting aliquots from individual fractions in the liquid scintillation counter). In addition, the results using an electronic stream splitter in the analysis of a percentage of the effluent directly by Flo-One HP are evaluated. The remaining percentage is collected in a fraction collector and is used for further analysis (e.g. recrystallization, RIA, further purification and characterization).  相似文献   

19.
The miniaturization of analytical techniques is a general trend in speciation analytics. We have developed a new analytical technique combining high pressure liquid chromatography (HPLC) with laser-induced breakdown spectroscopy (LIBS). This enables a molecule-specific separation followed by an element-specific analysis of smallest amounts of complex samples. The liquid flow coming from a HPLC pump is transformed into a continuous stream of small droplets (diameter 50–100 μm, volume 65–500 pl) using a piezoelectric pulsed nozzle. After the detection of single droplets with a droplet detector, a Q-switched Nd:YAG Laser is triggered to emit a synchronized laser pulse that irradiates a single droplet. The droplets are evaporated and transformed to the plasma state. The spectrum emitted from the plasma is collected by a spherical mirror and directed through the entrance slit of a Paschen–Runge spectrometer equipped with channel photomultipliers. The spectrometer detects 31 elements simultaneously covering a spectral range from 120 to 589 nm. Purging the measurement chamber with argon enables the detection of vacuum–UV lines. Since the sample is transferred to the plasma state without dilution, very low flow rates in the sub-μl/min range can be realised.  相似文献   

20.
A simple interface between a capillary supercritical fluid chromatograph and an Extranuclear Simulscan mass spectrometer is described. The SFC column is directly inserted into the ion source through the existing GC-interface. The system is equipped with a splitting device which allows simultaneous EI/MS and flame ionization detection when CO2 is used as the supercritical phase. The effect of source temperature and pressure on CO2 clustering was studied for optimization of source conditions. The performance of the system was evaluated with a series of model compounds and standard mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号