首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intermolecular interaction energies of 12 orientations of C(3)F(8) dimers were calculated with electron correlation correction by the second-order M?ller-Plesset perturbation method. The antiparallel C(2h) dimer has the largest interaction energy (-1.45 kcal/mol). Electron correlation correction increases the attraction considerably. Electrostatic energy is not large. Dispersion is mainly responsible for the attraction. Orientation dependence of the interaction energy of the C(3)F(8) dimer is substantially smaller than that of the C(3)H(8) dimer. The calculated interaction energy of the C(3)F(8) dimer at the potential minimum is 78% of that of the C(3)H(8) dimer (-1.85 kcal/mol), whereas the interaction energies of the CF(4) and C(2)F(6) dimers are larger than those of the CH(4) and C(2)H(6) dimers. The intermolecular separation in the C(3)F(8) dimer at the potential minimum is substantially larger than that in the C(3)H(8) dimer. The larger intermolecular separation due to the steric repulsion between fluorine atoms is the cause of the smaller interaction energy of the C(3)F(8) dimer at the potential minimum. The calculated intermolecular interaction energy potentials of the C(3)F(8) dimers using an all atom model OPLS-AA (OPLS all atom model) force field and a united atom model force field were compared with the ab initio calculations. Although the two force fields well reproduces the experimental vapor and liquid properties of perfluoroalkenes, the comparison shows that the united atom model underestimates the potential depth and orientation dependence of the interaction energy. The potentials obtained by the OPLS-AA force field are close to those obtained by the ab initio calculations.  相似文献   

2.
3.
Anti-ferromagnetic interaction was observed in a new crystal that consists of mononuclear CoII complexes, namely [Co(PMP)(N3)] (PMP?=?2,9-bis(pyridin-2-methoxyl)-1,10-phenanthroline); in the mononuclear complex CoII has a distorted trigonal-bipyramidal geometry. Analysis for the crystal structure indicates six magnetic coupling pathways among adjacent complexes, in which three involve π–π stacking and the other three deal with intermolecular interactions. The fitting for the variable-temperature magnetic susceptibilities with the Curie–Weiss formula shows an anti-ferromagnetic interaction between adjacent CoII ions with θ?=??5.49 K?=??3.82?cm?1. Theoretical calculations on the spin section reveal that the three π–π stacking systems result in magnetic coupling constants 2J?=??0.10?cm?1, ?0.10?cm?1, and 1.24?cm?1, respectively, and the three intermolecular interactions lead to weak anti-ferromagnetic interactions with 2J?=??0.36?cm?1, ?0.26?cm?1, and ?0.32?cm?1, respectively. The theoretical calculations and the experimental magnetic data imply that the anti-ferromagnetic interaction involves the orbital contribution of the relevant CoII ions.  相似文献   

4.
A variation-perturbation procedure for the evaluation of dispersion interaction, originally proposed by Jeziorski and van Hemert, has been reformulated to include basis set extension effects on an equal footing with the SCF interaction energy, corrected for basis set superposition error (BSSE). This approach has been tested for He2, (H2)2, (H2O)2, and (C2H4)2 complexes.The research was supported by ONR under contract N00014-80-C-0003 and in part by PAN within MR-I-9 project.  相似文献   

5.
Theoretical and matrix-isolation studies of intermolecular complexes of HXeOH with water molecules are presented. The structures and possible decomposition routes of the HXeOH-(H(2)O)(n)(n = 0, 1, 2, 3) complexes are analyzed theoretically. It is concluded that the decay of these metastable species may proceed through the bent transition states (TSs), leading to the global minima on the respective potential energy surfaces, Xe + (H(2)O)(n+1). The respective barrier heights are 39.6, 26.6, 11.2, and 0.4 kcal/mol for n = 0, 1, 2, and 3. HXeOH in larger water clusters is computationally unstable with respect to the bending coordinate, representing the destabilization effect. Another decomposition channel of HXeOH-(H(2)O)(n), via a linear TS, leads to a direct break of the H-Xe bond of HXeOH. In this case, the attached water molecules stabilize HXeOH by strengthening the H-Xe bond. Due to the stabilization, a large blue shift of the H-Xe stretching mode upon complexation of HXeOH with water molecules is featured in calculations. On the basis of this computational result, the IR absorption bands at 1681 and 1742 cm(-1) observed after UV photolysis and annealing of multimeric H(2)O/Xe matrixes are assigned to the HXeOH-H(2)O and HXeOH-(H(2)O)(2) complexes. These bands are blue-shifted by 103 and 164 cm(-1) from the known monomeric HXeOH absorption.  相似文献   

6.
The redundancy-free internal valence compliance constants of open-chain water dimer and formic acid cyclic dimer have been determined by the combined use of the CNDO /Force method and the compliance constant formalism. The final compliant fields of these dimers have been refined with the help of experimental frequency data.  相似文献   

7.
The long-range correction (LC) scheme of density-functional theory (DFT) was applied to the calculation of the pi-aromatic interaction of the benzene dimer and naphthalene dimer. In previous calculations, it was confirmed that the LC scheme [Iikura et al., J. Chem. Phys. 115, 3540 (2001)] gives very accurate potential- energy surfaces (PESs) of small van der Waals (vdW) complexes by combining with the Anderson-Langreth-Lundqvist (ALL) vdW correlation functional [Andersson et al., Phys. Rev. Lett. 76, 102 (1996)] (LC-DFT + ALL). In this study, LC-DFT+ALL method was examined by calculating a wide range of PES of the benzene dimer including parallel, T-shaped, and parallel-displaced configurations. As a result, we succeeded in reproducing very accurate PES within the energy deviance of less than 1 kcalmol in comparison with the results of high-level ab initio molecular-orbital methods at all reference points on the PES. It was also found that LC-DFT + ALL gave accurate results independent of exchange-correlation functional used, in contrast with the strong functional dependencies of conventional pure functionals. This indicates that both exchange repulsion and van der Waals attractive interactions should be correctly incorporated in conventional pure functionals in order to calculate accurate pi-aromatic interactions. We also found that LC-DFT + ALL method has a low basis-set dependency in the calculations of pi-aromatic interactions. The present scheme was also successfully applied to the pi,[ellipsis (horizontal)],pi stacking interactions of naphthalene dimer. This may suggest that LC-DFT + ALL method would be a powerful tool in the calculations of large molecules such as biomolecules.  相似文献   

8.
A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.  相似文献   

9.
The results of some minimal basis set valence bond calculations, with an antibonding midbond molecular orbital (πm*) included, are reported for the D2h isomer of O4. The in-plane πm*←π* excitations describe the charge transfer from each monomer, while the π*←π excitations on each monomer partially describe the intermolecular dispersive attractions. It is found that the charge-transfer interactions by themselves are insufficient to stabilize the S=0 spin D2h dimer of O4 relative to two O2 monomers when a correction is included for basis set superposition error. The inclusion of both the charge transfer and dispersion terms yields an estimate of 14 cm−1 for the binding energy (De) at an equilibrium separation (Re) of 3.29 Å. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 129–134, 1998  相似文献   

10.
A tetranuclear CuICuII mixed oxidation state complex, [CuII 2(μ-I)2CuI 2(μ-I)2(phenP)2I2] (phenPE: 2-(1H-pyrazol-1-yl)-1,10-phenanthroline), has been prepared and its crystal structure is determined by X-ray crystallography. In the complex, CuII is a distorted square pyramid and CuI is a distorted trigonal planar coordination environment; CuII and CuI are bridged by iodide. It is rare to form a CuII-iodide bond and for CuII and CuI to be bridged by iodide. In the crystal, there is a slipped ππ stacking between adjacent CuII complexes, which resulted in the formation of the 1-D chain along the c axis. The fitting for the variable-temperature magnetic susceptibility data gave magnetic coupling constant 2J?=??1.16?cm?1 and it may be ascribed to the intermolecular ππ magnetic coupling pathway.  相似文献   

11.
We have applied the ab initio formulation of the perturbative configuration interaction using localized orbitals (PCILO ) method up to third order to calculate intermolecular and intramolecular interaction energies going beyond the ab initio Hartree–Fock calculation. For the rotational barrier in ethane our results agree well with the experimental value and the cis- and even the trans-barriers in HOOH are at least qualitatively reproduced with the aid of the STO -3G basis set. In the case of the water dimer we obtain an equilibrium intermolecular distance and interaction energy which are confirmed by other calculations. We can further conclude from our studies that one has to include higher orders in the perturbation expansion as the system becomes more complicated. It is especially the last aspect which hinders the application of the ab initio PCILO to estimate the major part of the electron correlation energy for large molecules.  相似文献   

12.
We employed depolarized hyper-Rayleigh scattering (HRS) to investigate the intermolecular interactions in liquid nitrobenzene. By comparing the depolarization ratios of the second-harmonic scattered light from neat nitrobenzene and mixtures of nitrobenzene and methanol of varying mixing ratios, we demonstrated the existence of a coherent component of HRS in liquid nitrobenzene. The coherent component was found to essentially disappear at a sufficiently high dilution of the nitrobenzene liquid. We also observed that both localized orientational correlation and delocalized libron excitation contribute to coherent HRS in liquid nitrobenzene. The delocalized contribution to coherent HRS was found to diminish much more readily with the introduction of interstitial foreign molecules than the localized contribution.  相似文献   

13.
Interactions involving aromatic rings are important in molecular/biomolecular assembly and engineering. As a consequence, there have been a number of investigations on dimers involving benzene or other substituted pi systems. In this Feature Article, we examine the relevance of the magnitudes of their attractive and repulsive interaction energy components in governing the geometries of several pi-pi systems. The geometries and the associated binding energies were evaluated at the complete basis set (CBS) limit of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using a least biased scheme for the given data set. The results for the benzene dimer indicate that the floppy T-shaped structure (center-to-center distance: 4.96 A, with an axial benzene off-centered above the facial benzene) is isoenergetic in zero-point-energy (ZPE) corrected binding energy (D0) to the displaced-stacked structure (vertical interplanar distance: 3.54 A). However, the T-shaped structure is likely to be slightly more stable (D0 approximately equal to 2.4-2.5 kcal/mol) if quadruple excitations are included in the coupled cluster calculations. The presence of substituents on the aromatic ring, irrespective of their electron withdrawing or donating nature, leads to an increase in the binding energy, and the displaced-stacked conformations are more stabilized than the T-shaped conformers. This explains the wide prevalence of displaced stacked structures in organic crystals. Despite that the dispersion energy is dominating, the substituent as well as the conformational effects are correlated to the electrostatic interaction. This electrostatic origin implies that the substituent effect would be reduced in polar solution, but important in apolar media, in particular, for assembling processes.  相似文献   

14.
15.
In recent publications [A. D. Becke and E. R. Johnson, J. Chem. Phys. 122, 154104 (2005); E. R. Johnson and A. D. Becke 123, 024101 (2005)] we have demonstrated that the position-dependent dipole moment of the exchange hole can be used to generate dispersion interactions between closed-shell systems. Remarkably accurate C6 coefficients and intermolecular potential-energy surfaces can be obtained from Hartree-Fock occupied orbitals and polarizability data alone. In the present work, our model is extended to predict C8 and C10 coefficients as well. These higher-order coefficients are obtained as easily as C6 and with comparable accuracy.  相似文献   

16.
The low-frequency modes of the benzoic acid (BA) dimer and its analogues in carbon tetrachloride (CCl(4)) have been investigated by terahertz time-domain spectroscopy. The solute spectrum is obtained by subtracting the solvent contribution from that of the solution. The difference spectrum of BA in CCl(4) has a broad band with a peak at 68 cm(-1). To assign the observed band, the spectrum is compared with spectra of other aromatic molecules, such as benzene and phenol in addition to p-methyl BA and deuterated BA species (BA-d(OH) and BA-d(5)) in CCl(4). The band at 68 cm(-1) is assigned to the cogwheel mode of the BA dimer. Density functional theory calculations also support this assignment. Finally, spectral lineshape analysis based on the multimode Brownian oscillator model is applied to the THz spectra for all the samples.  相似文献   

17.
The intermolecular interaction force of actin was studied by a dynamic light scattering technique. The mutual diffusion coefficients (D) of monomeric actin were accurately determined in a G-buffer with a low concentration of KCl from 0 to 10 mM. The translational diffusion coefficient was obtained as D(0) = (87 +/- 3) x 10(-12) m(2).s(-1) at 25 degrees C and pH 7.4, which gives a hydrodynamic radius of monomeric actin of r(H) = 2.8 +/- 0.1 nm. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, assuming electrostatic and van der Waals potentials, failed to describe the change in interaction parameter (lambda) with KCl concentration, but the extended DLVO theory succeeded if an additional repulsive potential was assumed. The Hamaker constant of actin in the Ca(2+)-ATP bound state was determined for the first time as A(H) = 10.4 +/- 0.6 k(B)T.  相似文献   

18.
19.
The interaction energy for the cyclic CH4 trimer is studied in terms of symmetry-adapted perturbation theory. The interaction energy around the van der Waals minimum is dominated by attractive dispersion energy, and the repulsive contribution at the smaller angle region is due to the first-order exchange energy. The total interaction energy is approximated by additive two-body components, because of a mutual cancellation between nonadditive three-body ones.  相似文献   

20.
A general method has been developed to control the selective rearrangement of Meijer's AADD quadruply hydrogen-bonded homodimers by introducing an additional donor-acceptor interaction. Therefore, one donor-assembling monomer, 1, in which the electron-rich bis(p-phenylene)-34-crown-10 moiety is connected to the hydrogen-bonding moiety, and two acceptor-assembling monomers, 2 and 3, in which the electron-deficient pyromellitic diimide or naphthalene diimide group is incorporated, respectively, are synthesized and characterized. 1H NMR and 2D-NOESY studies show that all these compounds exist as stable homodimers in chloroform. Mixing 1 equiv of 1 with 1 equiv of 2 in chloroform leads to the formation of heterodimers 1.2 in approximately 60 % yield, as a result of the electrostatic interaction between the bis(p-phenylene)-34-crown-10 moiety of 1 and the pyromellitic diimide group of 2. Selective formation of heterodimer 1.3 (>97 %) was achieved by mixing 1 equiv of 1 with 1 equiv of 3 in chloroform which resulted in a strengthened electrostatic interaction between the bis(p-phenylene)-[34]crown-10 moiety of 1 and the naphthalene diimide group of 3. The structures of heterodimers 1.2 and 1.3, which have been characterized by 1H NMR and UV/Vis experiments, reveal a remarkable promoting effect between the donor-acceptor interaction and intermolecular hydrogen-bonding. 1H NMR studies also reveal that heterodimers 1.2 and 1.3 can be fully and partially dissociated by addition of heterocycle 29, leading to the formation of new more robust heterodimers 1.29 and 2.29, or 3.29,respectively, and partially regenerated by subsequent addition of heterocyclic compound 30 through the formation of a new heterodimer 29.30. Heterodimers 1.2 and 1.3 represent a novel class of pseudo[2]rotaxanes constructed by two different noncovalent interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号