首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Autofluorescence lifetime measurements, which can provide label-free readouts in biological tissues, contrasting e.g. different types and states of tissue matrix components and different cellular metabolites, may have significant clinical potential for diagnosis and to provide surgical guidance. However, the cost of the instrumentation typically used currently presents a barrier to wider implementation. We describe a low-cost single point time-resolved autofluorescence instrument, exploiting modulated laser diodes for excitation and FPGA-based circuitry for detection, together with a custom constant fraction discriminator. Its temporal accuracy is compared against a “gold-standard” instrument incorporating commercial TCSPC circuitry by resolving the fluorescence decays of reference fluorophores presenting single and double exponential decay profiles. To illustrate the potential to read out intrinsic contrast in tissue, we present preliminary measurements of autofluorescence lifetime measurements of biological tissues ex vivo. We believe that the lower cost of this instrument could enhance the potential of autofluorescence lifetime metrology for clinical deployment and commercial development.  相似文献   

2.
Several sensing concepts using nanostructures prepared by focused-electron-beam-induced deposition have been developed over the last years. Following work on highly miniaturized Hall sensors for magnetic sensing with soft magnetic Co, strain and force sensing based on nano-granular platinum–carbon structures (Pt(C)) was introduced. Very recently, the capability of nano-granular Pt(C) structures to detect the presence of adsorbate water layers by conductance modulations was demonstrated. For magnetic and strain sensing, the underlying physical mechanisms of the sensing effect have been analyzed in detail and are now quite well understood. This is not the case for the adsorbate layer-induced conductance modulation effect. Here, we provide a theoretical framework that allows for a semi-quantitative understanding of the observed water-sensing effect. We show how the near-interface renormalization of the Coulomb charging energy in the nano-granular metal caused by the dielectric screening of the polarizable adsorbate layer leads to a conductance modulation. The model can account for the conductance modulation observed in the water adsorbate experiments and can also be applied to understand similar effects caused by near-interface dielectric anomalies of ferroelectric thin films on top of nano-granular Pt(C). Our findings provide a pathway toward optimized nano-granular layer structures suitable for a wide range of dielectric or local potential sensing applications.  相似文献   

3.
Golub I  Mirtchev T  Nuttall J  Shaw D 《Optics letters》2012,37(13):2556-2558
We report the first observation (to our best knowledge) of a constant intensity, quasi-Bessel/nondiffracting beam in an absorbing medium generated by a novel optical element, "exicon," or exponential intensity axicon. Such absorption-compensated and diffraction-resistant beams can find applications in illumination, remote sensing, free-space communications, imaging in biological tissues, nonlinear optics, and other situations where absorption and diffraction hinder light propagation.  相似文献   

4.
Plasmonic nanoparticles (NPs) have been reviewed herein for their fascinating optical properties in a wide spectral range and for their various applications. The surface plasmon resonance (SPR) bands of metal NPs can be tuned from visible to near infrared region by varying the shape of the metal NPs. As a result, the tuning of the SPR band over a spectral range is possible by making plasmonic NPs of different shapes. This review emphasizes fundamental studies of plasmonic NPs and nanocomposites with well-defined and controlled shapes that have several analytical applications such as molecular detection and determination in different fields. This review describes how oxidative etching and kinetic control can be utilized to manipulate the shape and optical properties of NPs. This review also describes the specific examples of the sensing applications of the localized surface plasmon resonance studies in which the researchers use both wavelength shift and surface-enhanced Raman scattering sensing to detect the molecules of chemical and biological relevance. The review ends with a perspective of the field, identifying the main challenges to be overcome and suggesting areas where the most promising developments are likely to happen in future.  相似文献   

5.
Gold nanoparticles have attracted enormous scientific and technological interest due to their ease of synthesis, chemical stability, and unique optical properties. Proof-of-concept studies demonstrate their biomedical applications in chemical sensing, biological imaging, drug delivery, and cancer treatment. Knowledge about their potential toxicity and health impact is essential before these nanomaterials can be used in real clinical settings. Furthermore, the underlying interactions of these nanomaterials with physiological fluids is a key feature of understanding their biological impact, and these interactions can perhaps be exploited to mitigate unwanted toxic effects. In this Perspective we discuss recent results that address the toxicity of gold nanoparticles both in vitro and in vivo, and we provide some experimental recommendations for future research at the interface of nanotechnology and biological systems.  相似文献   

6.
In recent years our laboratories have reported the favorable effects for fluorophores placed in close proximity to surface immobilized silver nanostructures. These include; greater quantum yields, reduced lifetimes (increased photostability) and directional emission. However, while these findings are likely to find multifarious applications for surface assays based on enhanced fluorescence detection, a solution based enhanced sensing platform has yet to be realized. In this short, note, we show how SiO2-coated silver colloids, indeed provide for a solution based enhanced fluorescence sensing platform with a 3-5 fold enhancement typically observed.  相似文献   

7.
天文导航可全面地提供位置、航向、姿态和速度等核心导航信息,特别是在复杂电磁环境下,发挥着独特的重要作用。测星能力是天文导航设备的核心指标之一,提出了光电通道测星的信噪比和调制度的计算公式和参数选取说明,给出了短波红外测星设备的计算实例和实测结果,结果表明短波红外测星可显著延长测星时段。  相似文献   

8.
Abstract

Amphiphilic polymers (APs) characterized with excellent water solubility, biodegradability, biocompatibility, and low toxicity have become popular materials for biological sensing and imaging in the recent years. Among the several sensing and imaging techniques, fluorescence-based methods show distinct advantages and present unique opportunities to address challenges afforded by other techniques. This review covers five different types of APs (amphiphilic-conjugated polymers, amphiphilic polysaccharides, amphiphilic molecularly imprinted polymers, amphiphilic block copolymers, and amphiphilic polymeric nanoparticles) and their application for fluorescence spectroscopic sensing and imaging, in particular how techniques have been progressed over recent years. Afterwards, the applications of APs in the diagnosis and treatment of diseases, water safety and environmental monitoring has been discussed.  相似文献   

9.
A computational study on the structural and electronic properties of a special class of artificial atoms, known as quantum dots, has been carried out. These are semiconductors with unique optical and electronic properties and have been widely used in various applications, such as bio-sensing, bio-imaging, and so on. We have considered quantum dots belonging to II–VI types of semiconductors, due to their wide band gap, possession of large exciton binding energies and unique optical and electronic properties. We have studied their applications as chemical ion sensors by beginning with the study of the ion sensing ability of (CdSe) n (n?=?3, 6, 9 which are in the size range of ~?0.24, 0.49, 0.74 nm, respectively) quantum dots for cations of the zinc triad, namely Zn2+, Cd2+, Hg2+, and various anions of biological and environmental importance, and studied the effect of increasing number of rings on their ion sensing ability. The various structural, electronic, and optical properties, their interaction energies, and charge transfer on interaction with metal ions and anions have been calculated and reported. Our studies indicate that the CdSe quantum dots can be employed as sensors for both divalent cations and anions, but they can sense cations better than anions.  相似文献   

10.
Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method.The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect.The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled.In contrast,for the case of the emitter placed inside the nanoshell,it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations.Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label.The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors,and the nanocomposite configuration has great potential for optical detecting,imaging and sensing in biological applications.  相似文献   

11.
Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.  相似文献   

12.
Reaction-Diffusion (RD) mechanisms can describe many biological phenomena such as neuron firing in the brain, the heartbeat, cellular organization activities or even biological disorders such as fibrillation. The FitzHugh-Nagumo (FHN) model is a particular case of RD systems. It is able to capture the key features of many biological processes and since it is relatively simple it has been widely employed during recent years. Some examples of its predictive capabilities include the representation of the normal behavior of some physiological phenomena, related to a travelling plane wave, as well as biological disorders associated with spiral or irregular fronts. The objective of this work is to design a control law that is able to stabilize complex behaviors (travelling plane wave) in biological systems using the FHN model as a case study. Since, in biological systems there usually exists a lack of detailed information on the system structure, our control law will be designed to be robust, i.e., it must be able to reach the predefined reference regardless the presence of structural uncertainties. To this purpose, we will extend some classical results on the finite-dimensional robust control theory to RD systems by means of order reduction techniques, in particular the Proper Orthogonal Decomposition method.  相似文献   

13.
A novel all-fiber temperature-calibrated refractometer based on a compact fiber Bragg grating(FBG) single-multi-single(SMS)structure is proposed and experimentally demonstrated.The sensor head is composed of a FBG combined with a SMS structure,in which the middle multimode fiber(MMF)section is etched by a time-controlled hydrofluoric.The transmission dip of SMS is extremely sensitive to ambient refractive index(RI)variation,whereas the upstream FBG provides the necessary temperature information for RI calibration.All aforementioned functions are performed via a compact FBG-SMS structure not longer than 25 mm.The proposed sensing device provides a linear RI sensitivity over water or waterbased solutions(RI values near 1.33 at optical wavelengths for most biological and many environmental applications),and has temperature-calibration capability.Hence,the said refractometer is a good candidate for sensing in chemical and biological applications.  相似文献   

14.
The present work reviews current research activities for possible applications of silicon carbide (SiC) nanostructures. The main attention is devoted to emerging biomedical applications which can bring a boon for a healthy society. Highlights toward the widespread of SiC nanostructures in new fields of applications are reviewed and explained. This article surveys some of the recent work using SiC nanostructures in biomedical field, sensing, and energy harvesting including a review on nanostructure biocompatibility research to date.

The review article begins with an overview of the state of art of silicon carbide along with their behavior, properties, and applications of SiC in bulk, thin films, and nanoscale forms, respectively. The multidisciplinary applications of SiC nanostructures are also highlighted. Different applications elaborated are as follows: (1) biomedical/nanomedical applications, (2) nanoelectronics, (3) sensing applications, (4) energy harvesting, and (5) other emerging areas. The possibility for employing SiC nanostructures to be accomplished in upgrading the existing devices is suggested based on their properties. This article is concluded with some challenges for future applications.  相似文献   


15.
《Current Applied Physics》2015,15(5):632-641
Due to the highly inhomogeneous distributions of refractive indexes, light propagation in complex media such as biological tissue experiences multiple light scattering events. The suppression and control of multiple light scattering events are investigated because they offer the possibility of optical focusing and imaging through biological tissues, and they may open new avenues for diagnosis and treatment of several human diseases. In order to provide insight into how new optical techniques can address the issues of multiple light scattering in biomedical applications, the recent progress in optical wavefront-shaping techniques is summarized.  相似文献   

16.
PurposeWhile O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts.Theory and methodsA sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging.ResultsExperimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image.ConclusionsHigh resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging.  相似文献   

17.
制造技术与复杂模型、设计工具的进步使微纳结构光学器件的实现成为可能。微纳结构光学器件可用于导光与光的相互作用,液态或气态新型光源和传感器件。IPAS致力于新型光学材料研究与开发,将玻璃工艺和光纤开发有机结合,重点研究微纳结构光纤,光纤表面功能处理和器件开发。介绍了IPAS的研究实力和近年的发展概况,其中包括中红外光学材料、纳米粒子嵌入玻璃材料、新型化学和生物传感器(适用于超低量样本及/或体内样本)、激光器件,以及用于光数据处理的新型高非线性光纤。  相似文献   

18.
We demonstrate a size sensing technique for nano-particles using optical differential phase measurement by a dual fiber interferometer through phase-generated carrier(PGC) demodulation. Nano-particle diameters are obtained from the differential phase shift as a result of adding an optical scattering perturbation into two-beam interference. Polystyrene nano-particles with diameters from 200 to 900 nm in a microfluidic channel are detected using this technique to acquire real-time particle diameters. Compared with amplitude sensing with over 10 mW of laser irradiance, particle sizing by PGC phase sensing can be achieved at a laser power as low as1.18 mW. We further analyze major sources of noise in order to improve the limits of detection. This sensing technique may find a broad range of applications from the real-time selection of biological cell samples to rare cell detection in blood samples for early cancer screening.  相似文献   

19.
The design of micro‐optical resonator arrays are introduced and tailored towards refractive index sensing applications, building on the previously unexplored benefits of open dielectric stacks. The resonant coupling of identical hollow cavities present strong and narrow spectral resonance bands beyond that available with a single Fabry Perot interferometer. Femtosecond laser irradiation with selective chemical etching is applied to precisely fabricate stacked and waveguide‐coupled open resonators into fused silica, taking advantage of small 12 nm rms surface roughness made available by the self‐alignment of nanograting planes. Refractive index sensing of methanol‐water solutions confirm a very attractive sensing resolution of 6.5 × 10−5 RIU. Such high finesse optical elements open a new realm of optofluidic sensing and integrated optical circuit concepts for detecting minute changes in sample properties against a control solution that may find importance in chemical and biological sensors, telecom sensing networks, biomedical probes, and low‐cost health care products.

  相似文献   


20.
Fabry-Perot etalons have been fabricated with 3D colloidal photonic crystal mirrors. The colloid films were optimized for high reflection and low loss to provide good finesse values in the 1200-1700 nm spectral range. A cavity quality factor of 2400 and a finesse of 8 together with sharp 0.5 nm wide resonance transmission peaks are reported that attest to the relatively good optical quality of the three-dimensionally structured films and the promise of self-assembly colloidal crystal chemistry in providing novel microporous optical interferometers for potential applications such as environmental and biological sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号