首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). Accordingly, although no Raman signal is observable when 4-aminobenzenethiol (4-ABT), for instance, is self-assembled on a flat Au substrate, a distinct spectrum is obtained when Ag or Au nanoparticles are adsorbed on the pendent amine groups of 4-ABT. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Ag or Au nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap even by visible light. To appreciate the Raman scattering enhancement and also to seek the optimal condition for SERS at the nanogap, we have thoroughly examined the size effect of Ag nanoparticles, along with the excitation wavelength dependence, by assembling 4-ABT between planar Au and a variable-size Ag nanoparticle (from 20- to 80-nm in diameter). Regarding the size dependence, a higher Raman signal was observed when larger Ag nanoparticles were attached onto 4-ABT, irrespective of the excitation wavelength. Regarding the excitation wavelength, the highest Raman signal was measured at 568 nm excitation, slightly larger than that at 632.8 nm excitation. The Raman signal measured at 514.5 and 488 nm excitation was an order of magnitude weaker than that at 568 nm excitation, in agreement with the finite-difference time domain simulation. It is noteworthy that placing an Au nanoparticle on 4-ABT, instead of an Ag nanoparticle, the enhancement at the 568 nm excitation was several tens of times weaker than that at the 632.8 nm excitation, suggesting the importance of the localized surface plasmon resonance of the Ag nanoparticles for an effective coupling with the surface plasmon polariton of the planar Au substrate to induce a very intense electric field at the nanogap.  相似文献   

2.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   

3.
A microscopic approach to surface-enhanced Raman scattering (SERS) from molecules adsorbed on noble-metal nanoparticles is developed. For nanoparticle sizes smaller than 10 nm, the classical electromagnetic enhancement mechanism is modified by quantum-size effects. Using time-dependent local field approximation, we perform systematic analysis of SERS in nanometer-sized Ag nanoparticles. We find that, in small nanoparticles, Raman cross-section enhancement is governed by the interplay between Landau damping of the surface plasmon and interband screening in the nanoparticle surface layer.  相似文献   

4.
Au-Ag合金纳米粒子制备及其表面增强拉曼光谱研究   总被引:1,自引:1,他引:1  
首先采用柠檬酸钠法制得Au-Ag合金纳米种子, 然后采用盐酸羟胺生长法得到不同组成的Au-Ag合金纳米粒子. 在其UV-Vis光谱中只观察到一个位于单金属银和金之间的等离子体共振峰, 表明Au-Ag合金纳米粒子已经形成. TEM结果表明, 合金纳米粒子的粒径约为60 nm, 且颜色均一, 没有明显的核壳结构. 用苯硫酚(TP)作为探针分子研究了合金纳米粒子的表面增强拉曼光谱(SERS). 结果表明, SERS强度与合金纳米粒子的组成和尺寸有关. 当纳米粒子粒径一定时, 除Au25Ag75外, 随着金的增加SERS强度增强. Au25Ag75的粒径比Ag小, 导致SERS强度比Ag低. Au50Ag50和Au75Ag25加入TP分子后, 其聚集方式与Au相似, 等离子体共振峰逐渐靠近1064 nm, 金含量较高时, TP的SERS归于聚集体的等离子体共振增强的贡献.  相似文献   

5.
金核银壳纳米粒子薄膜的制备及SERS活性研究   总被引:5,自引:0,他引:5  
采用柠檬酸化学还原法制备金溶胶, 通过自组装技术在石英片表面制备金纳米粒子薄膜, 在银增强剂混合溶液中反应获得金核银壳纳米粒子薄膜. 用紫外-可见吸收光谱仪和原子力显微镜(AFM)研究了不同条件下制备的金核银壳纳米粒子薄膜的光谱特性和表面形貌, 并以结晶紫为探针分子测量了金核银壳纳米粒子薄膜的表面增强拉曼光谱(SERS). 结果表明, 金纳米粒子薄膜的分布、银增强剂反应时间的长短对金核银壳纳米粒子薄膜的形成均有重要影响. 制备过程中, 可以通过控制反应条件获得一定粒径的、具有良好表面增强拉曼散射活性的金核银壳纳米粒子薄膜.  相似文献   

6.
黄洁  姚建林  顾仁敖 《化学学报》2007,65(22):2505-2509
采用自组装技术在硅基底上进行金银纳米粒子的混合组装, 通过控制组装溶液中金银溶胶的体积比而控制基底上金银纳米粒子的密度. SEM结果显示金银呈亚单层均匀分布, 以吡啶为探针分子, 在不同波长的激发光下研究了纯金、银以及混合组装时的SERS效应. 利用金银在不同激发线下增强效应的不同以及探针分子吸附在金银纳米粒子表面主要谱峰相对强度差别的特点, 通过一系列校正以及差谱方法研究了金银共存时SERS效应的变化, 并分离出混合体系中金的增强行为, 结果表明在金银同时组装时吡啶的SERS谱峰特征主要表现为银纳米粒子的行为, 分离出的金SERS光谱特征接近银的行为, 说明金银纳米粒子之间产生了一定的耦合作用.  相似文献   

7.
Because Ag and Au nanoparticles (NPs) possess well-defined localized surface plasmon resonance (LSPR) they are popularly employed in the studies of surface-enhanced Raman scattering (SERS). As shown in the literature and in our previous studies, the advantage of SERS-active Ag NPs is their higher SERS enhancement over Au NPs. On the other hand, the disadvantage of SERS-active Ag NPs compared to Au NPs is their serious decay of SERS enhancement in ambient laboratory air. In this work, we develop a new strategy for preparing highly SERS-active Ag NPs deposited on a roughened Au substrate. This strategy is derived from the modification of electrochemical underpotential deposition (UPD) of metals. The coverage of Ag NPs on the roughened Au substrate can be as high as 0.95. Experimental results indicate that the SERS of Rhodamine 6G (R6G) observed on this developed substrate exhibits a higher intensity by ca. 50-fold of magnitude, as compared with that of R6G observed on the substrate without the deposition of Ag NPs. The limit of detection (LOD) for R6G measured on this substrate is markedly reduced to 2 × 10−15 M. Moreover, aging of SERS effect observed on this developed substrate is significantly depressed, as compared with that observed on a generally prepared SERS-active Ag substrate. These aging tests were performed in an atmosphere of 50% relative humidity (RH) and 20% (v/v) O2 at 30 °C for 60 day. Also, the developed SERS-active substrate enables it practically applicable in the trace detection of monosodium urate (MSU)-containing solution in gouty arthritis without a further purification process.  相似文献   

8.
Raman scattering measurements were conducted for a 4-aminobenzenethiol (4-ABT) monolayer assembled on a macroscopically smooth Au substrate. Although no peak was detected at the beginning, Raman peaks were distinctly observed by attaching Ag or Au nanoparticles onto the 4-ABT monolayer (Ag(Au)@4-ABT/Au(flat)). Considering the fact that no Raman signal is observed when Ag (Au) nanoparticles are adsorbed on a (4-aminophenyl)silane monolayer assembled on a silicon wafer, the Raman spectrum observed for Ag(Au)@4-ABT/Au(flat) must be a surface-enhanced Raman scattering (SERS) spectrum, derived from the electromagnetic coupling of the localized surface plasmon of Ag (Au) nanoparticles with the surface plasmon polariton of the underneath Au metal. The electromagnetic coupling responsible for SERS appeared to be governed more by the bulk Au substrate than the sparsely distributed Ag or Au nanoparticles. The chemical enhancement appeared on the other hand to be derived more from the formation of Au-S bonds than any charge-transfer interaction between the protonated amine group and the Au or Ag nanoparticles. The enhancement factors derived from the attachment of a single Ag or Au nanoparticle onto 4-ABT on Au were estimated to be as large as 8.3 x 10(5) and 5.0 x 10(5), respectively, (for the ring 3 band (b(2)) near 1390 cm(-1)) in which a factor of approximately 10(2) was presumed to be due to the chemical effect, with the remaining contributed by the electromagnetic effect.  相似文献   

9.
We have developed a novel technique to precisely determine the Raman enhancement factor in single nanoplasmonic resonators (TNPRs). TNPRs are lithographically defined metallodielectric nanoparticles composed of two silver disks stacked vertically, separated by a silica layer. At resonance, the local electromagnetic fields are enhanced at the TNPR surface, making it an ideal surface-enhanced Raman scattering (SERS) active substrate. The ability to control the dimensions of the metallic and dielectric layers offers the unique advantage of fine-tuning the plasmon resonance frequency to maximize the enhancement of the Raman signal. Furthermore, by selective shielding of the outer surface of the metallic structure, the efficiency can be further enhanced by guiding the molecular assembly to the locations that exhibit strong electromagnetic fields. We experimentally demonstrate SERS enhancement factors of (6.1+/-0.3)x10(10), with the highest enhancement factor being achieved by using an individual nanoparticle. By using nanofabrication techniques, we eliminate the issues such as large size variations, cluster aggregation, and interparticle effects common in preparing SERS substrates using conventional chemical synthesis or batch fabrication methods. TNPRs produce very controllable and repeatable SERS signals at the desired locations and, thus, make an ideal candidate for device integration.  相似文献   

10.
Silver nanostructured films were directly prepared by spray deposition of preformed polyol-based Ag-PVP nanoparticles. These homogeneous films of high optical quality were tested as SERS-active substrates. Laser excitation at 514.5 nm within the red part of the plasmon band leads to intense and reproducible SERS spectra of acridine, used as the probe molecule. From SERS measurements at different pH values, it was possible to determine the apparent pK(a) of acridine and to obtain specific surface properties of the film. Finally, these SERS titrations along with enhancement factor estimates allowed us to further depict the nature of the films.  相似文献   

11.
Surface-enhanced Raman scattering (SERS) was discovered three decades ago and has gone through a tortuous pathway to develop into a powerful diagnostic technique. Recently, the lack of substrate, surface and molecular generalities of SERS has been circumvented to a large extent by devising and utilizing various nanostructures by many groups including ours. This article aims to present our recent approaches of utilizing the borrowing SERS activity strategy mainly through constructing two types of nanostructures. The first nanostructure is chemically synthesized Au nanoparticles coated with ultra-thin shells (ca. one to ten atomic layers) of various transition metals, e.g., Pt, Pd, Ni and Co, respectively. Boosted by the long-range effect of the enhanced electromagnetic (EM) field generated by the highly SERS-active Au core, the originally low surface enhancement of the transition metal can be substantially improved giving total enhancement factors up to 10(4)-10(5). It allows us to obtain the Raman spectra of surface water, having small Raman cross-section, on several transition metals for the first time. To expand the surface generality of SERS, tip-enhanced Raman spectroscopy (TERS) has been employed. With TERS, a nanogap can be formed controllably between an atomically flat metal surface and the tip with an optimized shape, within which the enhanced EM field from the tip can be coupled (borrowed) effectively. Therefore, one can obtain surface Raman signals (TERS signals) from adsorbed species at Au(110), Au(111) and, more importantly, Pt(l10) surfaces. The enhancement factor achieved on these single crystal surfaces can be up to 106, especially with a very high spatial resolution down to about 14 nm. To fully accomplish the borrowing strategy from different nanostructures and to explain the experimental observations, a three-dimensional finite-difference time-domain method was used to calculate and evaluate the local EM field on the core-shell nanoparticle surfaces and the TERS tips. Finally, prospects and further developments of this valuable strategy are briefly discussed with emphasis on the emerging experimental methodologies.  相似文献   

12.
Surface-enhanced Raman scattering (SERS) of p-aminothiophenol (PATP) molecules adsorbed onto assemblies of Au(core)/Cu(shell) nanoparticles is reported. We compare it with the SERS spectrum of PATP adsorbed onto gold nanoparticles: both the absolute and relative scattered intensities of various bands in the two spectra are very different. The difference in relative intensity can be ascribed to chemical effects; the chemical enhancement ratio of the two substrates is approximately 3-5. A theoretical analysis based on a charge-transfer model is carried out, which yields a consistent result and shows that the difference in chemical enhancement is mainly due to the state densities and Fermi levels of the substrates. The difference in absolute intensity originates from electromagnetic (EM) enhancement. EM enhancement of Au(core)/Cu(shell) nanoparticles is unlike that of single-component gold or copper SERS-active substrates. The core/shell particle size for optimal enhancement is about 20 nm in the case of a 632.8 nm incident laser (the size ratio of the core and shell layers is about 0.6).  相似文献   

13.
We report on the fabrication of a class of surface-enhanced Raman scattering(SERS)active thermometers,which consists of60 nm gold nanoparticles,encoded with Raman-active dyes,and a layer of thermoresponsive poly(N-isopropylacrylamide)(PNIPAM)brush with different chain lengths.These SERS-active nanoparticles can be optimized to maintain spectrally silent when staying as single particles in dispersion.Increasing temperature in a wide range from 25 to 55°C can reversibly induce the interparticle self-aggregation and turn on the SERS fingerprint signals with up to 58-fold of enhancement by taking advantage of the interparticle plasmonic coupling generated in the process of thermo-induced nanoparticles self-aggregation.Moreover,the most significative point is that these SERS probes could maintain their response to temperature and present all fingerprint signals in the presence of a colored complex.However,the UV-Vis spectra can distinguish the differences faintly and the solution color shows little change in such complex mixture.This proof-of-concept and Raman technique applied here allow for dynamic SERS platform for onsite temperature detection in a wide temperature range and offer unique advantages over other detection schemes.  相似文献   

14.
Surface-enhanced Raman spectroscopy (SERS) substrates have been prepared by depositing Au or Ag on porous GaN (PGaN). The PGaN used as the template for the metal deposition in these studies was generated by a Pt-assisted electroless etching technique. PGaN was chosen as a potential SERS template due to its nanostructured surface and high surface area, two characteristics that are important for SERS substrates. Metal films were deposited either by solution-based electroless deposition or by thermal vacuum evaporation. SERS spectra were recorded at lambda = 752.5 nm for Au films and at lambda = 514.5 nm for Ag films deposited on PGaN. The SERS signal strength across the metal coated PGaN substrates was uniform and was not plagued by "hot" or "cold" spots on the surface, a common problem with other SERS surfaces. The Ag film deposited by electroless deposition had the highest overall SERS response, with an enhancement factor (EF) relative to normal Raman spectroscopy of 10(8). A portion of the increase in EF relative to typical SERS-active substrates can be assigned to the large surface area characteristic of the PGaN-Ag structures, but some of the enhancement is intrinsic and is likely related to the specific morphology of the metal-nanopore composite structure.  相似文献   

15.
Controlling the assembly of the nanoparticles is important because the optical properties of noble metal nanoparticles, such as the surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), are critically dependent on interparticle distances. Among many approaches available, light-induced disassembly is particularly attractive because it enables spatial modification of the optical properties of nanoparticle assemblies. In this study, we prepare gold nanoparticle (AuNP) aggregates in a gel matrix. Irradiation of the gelated AuNP aggregates at 532 nm leads to the disassembly of the aggregates, changing the color (SPR) from dark blue to red and extinguishing the SERS signal along the irradiated pattern, which opens the possibility of facile fabrication of spatially controlled SERS-generating microstructures. The photoinduced disassembly of the AuNP aggregates in solution is also investigated using UV-vis spectroscopy and transmission electron microscopy.  相似文献   

16.
Raman scattering measurements were conducted for 4-aminobenzenethiol (4-ABT) assembled on powdered copper substrates. Initially, very weak Raman peaks were detected, but upon attaching Ag nanoparticles probably via NH2 groups onto 4-ABT/Cu, distinct Raman spectra were observed. Considering the fact that no Raman peak was identified when Ag nanoparticles were adsorbed on 4-aminophenyl-derivatized silane monolayers assembled on silica powders, the Raman spectra observed for Ag@4-ABT/Cu should be surface-enhanced Raman scattering (SERS) spectra, occurring by an electromagnetic coupling of the localized surface plasmon of Ag nanoparticles with the surface plasmon polariton of Cu powders. The extra enhancement factor attainable by the attachment of a single Ag nanoparticle is estimated to be as large as 1.4 x 10(5) in the case when 632.8-nm radiation is used as the excitation source. When Au nanoparticles were attached onto 4-ABT/Cu, at least an order of magnitude weaker Raman spectra were obtained at all excitation wavelengths, however, indicating that the Au-to-Cu coupling should be far less effective than the Ag-to-Cu coupling for the induction of SERS.  相似文献   

17.
王健  朱涛  刘忠范 《物理化学学报》1996,12(11):961-964
A simple method for fabricating SERS-active substrate using Au nanoparticles is reported. HSCH2CH2NH2 was self-assembled on the Au/glass substrate, then nanoparticles of colloidal gold were bound to the surface. The SERS effect of such prepared substrate was studied by using BPE and an azobenzene thiol derivated compound and the SERS enhanced factor was found about 3×103.  相似文献   

18.
Colloidal silver nanoparticles were prepared by reducing silver nitrate with sodium borohydride. The synthesized silver particles show an intense surface plasmon band in the visible region. The work reported here describes the interaction between nanoscale silver particles and various DNA bases (adenine, guanine, cytosine, and thymine), which are used as molecular linkers because of their biological significance. In colloidal solutions, the color of silver nanoparticles may range from red to purple to orange to blue, depending on the degree of aggregation as well as the orientation of the individual particles within the aggregates. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and absorption spectroscopy were used to characterize the assemblies. DNA base-induced differential silver nanoparticle aggregation was quantified from the peak separation (relates to color) of surface plasmon resonance spectroscopy (SPRS) and the signal intensity of surface-enhanced Raman scattering (SERS), which rationalize the extent of silver-nucleobase interactions.  相似文献   

19.
Two different silver colloids were prepared by chemical reduction of silver nitrate with trisodium citrate and hydroxylamine hydrochloride to compare their characteristics in relation to their possible use in surface-enhanced Raman scattering (SERS) spectroscopy. The morphology and plasmon resonance of the single nanoparticles and aggregates integrating these colloids were characterized by means of UV-vis absortion spectroscopy and scanning electron microscopy, revealing important differences between each type of nanoparticle as concerns their physical properties. These metallic systems also manifested differences in the aggregation and the adherence to glass surfaces, revealing significant differences in the chemical surface properties of these nanoparticles. SERS and surface-enhanced IR also indicated the presence of interference bands which can overlap the spectra of the analyte, mainly in the case of the citrate colloid. All these differences have an important influence on the applicability of these nanostructured systems in SERS. In fact, the enhancement factor and spectral pattern of the SERS obtained by using alizarin as a molecule probe are different.  相似文献   

20.
We have employed the proposed Silica-Silver Core-Shell (SSCS) SERS-active substrates to detect four model proteins: lysozyme (a protein without chromophore), cytochrome c (a protein with chromophore of heme), fluorescein isothiocyanate (FITC)-anti human IgG (labeled with FITC) and atto610-biotin/avidin (recognition with labeled small molecules). SERS spectra of these proteins and Raman labels on the SSCS substrates show both high sensitivity and reproducibility, which are due to electromagnetic SERS enhancement with additional localization field within closely packed Ag nanoparticles decorated on the SiO(2) nanoparticles and the aggregation of SiO(2)@Ag particles. We have found that the SERS intensities of atto610-biotin/avidin adsorbed on the SSCS substrates are about 20 times stronger than those from Ag plating on Au-decorated substrate. Moreover, the broad surface plasmon resonance (SPR) of the proposed substrates will extend SERS applications to more biological molecules with different laser excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号