首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glass melts in the system Fe2O3/FeO/CaO/Na2O/B2O3 were prepared from the raw materials, by firstly reducing them by flushing with nitrogen and subsequently roller quenching. The flakes obtained had a thickness of around 150 μm and were thermally treated at temperatures in the range from 550 to 620 °C. X-ray diffraction gave evidence of the occurrence of nanocrystalline magnetite. Magnetization measurements at room temperature show ferromagnetic behaviour and no hysteresis. Temperature-dependent measurements showed a monotonic decrease of the saturation magnetization with temperature, and a Curie temperature of 553 °C. The primary mean particle core diameter is around 10 nm after annealing at 570 °C.  相似文献   

2.
Measurements of mid-stratospheric formaldehyde (H2CO) have been obtained from the limb-viewing sub-millimeter radiometer (SMR) instrument aboard the Odin satellite. The analysis is based upon the only weak (808→707) rotational transition line of H2CO that can be measured by Odin/SMR at 576.7083150 GHz in the band dedicated to the measurement of carbon monoxide (CO). The signal-to-noise ratio is increased by averaging about 1000 spectra within 2-km width vertical layers in the stratosphere over periods from 1 to 7 days and within 3 latitude bands: Southern Hemisphere (90°S-45°S), tropics (30°S-30°N), and Northern Hemisphere (45°N-90°N). The faint H2CO line can then be retrieved using the standard scientific ground-segment developed for the Odin/SMR measurements. The mid-stratospheric H2CO shows maxima in the tropics for every period considered (January 2006, February 2005, March 2005, and September 2005). The spring-time extra-tropical mid-stratospheric H2CO is more intense than the fall-time extra-tropical amounts. The simulations from the three-dimensional chemical-transport model Reprobus satisfactorily show these general features.  相似文献   

3.
Na0.5Bi(0.5−x) SmxTiO3 (NBST) ceramics with x=0.05, 0.1, and 0.15 are prepared through chemical route. The X-ray diffraction studies confirmed the formation of single phase. Dielectric measurements in the temperature region ranging from room temperature (∼30 °C) to 600 °C at different frequencies (10 kHz-1 MHz) showed anomalies at 130, 306, and 474 °C (at 10 kHz frequency) for x=0.05 sample. Other samples showed only two peaks. To establish the electrical nature of these relaxations, impedance measurements are done at different temperatures and frequencies. The relaxation time, obtained from both impedance and modulus data, is found to decrease with increase in temperature. The relaxations observed are of non-Debye type. Increase in samarium content increases the activation energy for relaxation.  相似文献   

4.
Resistometric measurements have revealed the approximate position of the solvus line in the isopleth phase diagram of (Ni2Cu)1–x Sn x alloys for Sn content between 0 and 14 at.% and temperatures between 600 and 900°C. The data were analyzed on the ground of a model which takes into account their dynamic character. Within the two-phase region they indicate the existence of two different phase-states of the system. Control X-ray measurements have shown that in the high temperature region above approx. 700°C the second phase is of theDO 3 structure. Our results are in variance with published data.These measurements were kindly supported by the Czech Grant Agency under Contract Nr. 106/93/513. The help of Mrs. A. Svobodová during the preparation and evaluation of X-ray measurements is gratefully acknowledged.  相似文献   

5.
MnFe2O4 nanoparticles have been synthesized with a sol-gel method. Both differential thermal and thermo-gravimetric analyses indicate that MnFe2O4 nanoparticles form at 400 °C. Samples treated at 450 and 500 °C exhibit superparamagnetism at room temperature as implied from vibrating sample magnetometry. Mössbauer results indicate that as Mn2+ ions enter into the octahedral sites, Fe3+ ions transfer from octahedral to tetrahedral sites. When the calcination temperature increases from 450 to 700 °C, the occupation ratio of Fe3+ ions at the octahedral sites decreases from 43% to 39%. Susceptibility measurements versus magnetic field are reported for various temperatures (from 450 to 700 °C) and interpreted within the Stoner-Wohlfarth model.  相似文献   

6.
Temperature tunable, 90° phase matchable, parametric fluorescence has been observed in ADP and KDP crystals. The fluorescence was pumped by 2573 Å CW radiation obtained from a second harmonic argon-ion laser. Fluorescence was observed in ADP over the complete visible spectrum by temperature tuning through the range —12 to+40° C. The measurements demonstrate the usefulness of these materials for visible parametric oscillators. The values of d(n 2v en v o )/dT deduced from these and other measurements are found to disagree with values in the literature.  相似文献   

7.
In this work, we have investigated the room-temperature phase constitution of heat-treated Fe81Ga19 alloys cooled from 800 °C at different rates. Results show that at cooling rates in the range from 0.43 to 0.26 °C/min, in addition to the A2 matrix, an fcc phase also can be observed in Fe81Ga19 samples at room temperature. To investigate the precipitation of the fcc phase out of A2 matrix, a systematic study of phase constitution was carried out on the samples quenched from different temperatures during cooling from 800 °C at 0.32 °C/min, which reveals an anomalous phase transformation between A2 and fcc. Precipitation of the fcc phase from A2 matrix occurs at 500 °C and its volume fraction exhibits a sharp increase at 400 °C. However, it begins to dissolve when further decreasing the temperature and only a minor fcc phase can be retained at room temperature, which suggests that the fcc phase is metastable below 400 °C. Magnetic measurements indicate that the precipitation of fcc phase deteriorates the saturation magnetization of Fe81Ga19.  相似文献   

8.
Quantitative mid-IR absorption spectra (2500-3400 cm−1) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 °C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm−1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm−1 resolution. High-resolution (0.1 cm−1), room-temperature measurements of neat hydrocarbons were made at low pressure (∼1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 °C for atmospheric-pressure measurements of hydrocarbon/N2 mixtures (Xhydrocarbon∼0.06-1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement.  相似文献   

9.
The long-term trend of methane (CH4) in the lower stratosphere has been estimated for the 1985-2008 time period by combining spaceborne solar occultation measurements recorded with high spectral resolution Fourier transform spectrometers (FTSs). Volume mixing ratio (VMR) FTS measurements from the ATMOS (atmospheric trace molecule spectroscopy) FTS covering 120-10 hPa (∼16-30 km altitude) at 25°N-35°N latitude from 1985 and 1994 have been combined with Atmospheric Chemistry Experiment (ACE) SCISAT-1 FTS measurements covering the same latitude and pressure range from 2004 to 2008. The CH4 trend was estimated by referencing the VMRs to those measured for the long-lived constituent N2O to account for the dynamic history of the sampled airmasses. The combined measurement set shows that the VMR increase measured by ATMOS has been replaced by a leveling off during the ACE measurement time period. Our conclusion is consistent with both remote sensing and in situ measurements of the CH4 trend obtained over the same time span.  相似文献   

10.
Observations of vacancy clusters formed in Czochralski (Cz) Si after high energy ion implantation are reported. Vacancy clusters were created by 2 MeV Si ion implantation of 1 × 1015 ions/cm2 and after annealing between 600 and 650 °C. Doppler broadening measurements using a slow positron beam have been performed on the self-implanted Si samples, both as-implanted and after annealing between 200 and 700 °C for time intervals ranging from 15 to 120 min. No change in the S parameter was noted after the thermal treatment up to 500 °C. However, the divacancies (V2) created as a consequence of the implantation were found to start agglomerating at 600 °C, forming vacancy clusters in two distinct layers below the surface; the first layer is up to 0.5 μm and the second layer is up to 2 μm. The S-W plots of the data suggest that clusters of the size of hexavacancies (V6) could be formed in both layers after annealing for up to an hour at 600 °C or half an hour at 650 °C. After annealing for longer times, it is expected that vacancies are a mixture of V6 and V2, with V6 most probably dominating in the first layer. Further annealing for longer times or higher temperatures breaks up the vacancy clusters or anneals them away.  相似文献   

11.
At 141 °C the solid acid CsHSO4 is known to undergo transition to a superprotonic phase that is characterized by dramatic (several-order-of-magnitude) increases in hydrogen ion conductivity. Proton NMR spin-spin relaxation time T2 measurements reported here for CsHSO4 also reveal substantial increases (factors of 20-30) in the vicinity of the transition temperature. In the temperature range just below the transition (70-136 °C), T2 increases by a factor of order 10 relative to the rigid-lattice regime, suggesting motional narrowing of the NMR resonance line. In the regime of motional narrowing, the activation energy barrier to diffusion is 0.40 eV, as determined from the present T2 results. NMR spin-lattice relaxation T1 measurements also show behavior consistent with transition to a regime of rapid hydrogen motion. In particular, proton T1's decrease with temperature (from 80 to 120 °C), and then drop sharply near the transition temperature. Above the transition temperature, T1 exhibits a minimum in which the correlation time is found to be ∼2 ns.  相似文献   

12.
Phosphor thermometry has been successfully used in a number of applications ranging from turbo-machinery, pyrolysis, supersonic and hypersonic studies in the past few decades. There are a number of issues related to high temperature, which include faster decays, decreasing emission intensity and increasing blackbody radiation. Although absolute lifetime decay values are readily available, there has been no known work presenting absolute intensity measurements throughout the phosphors operating temperature range. This additional information could help design engineers facilitate phosphor and instrument selection, optimise system setup, and help estimate the performance of the technique at higher temperatures, for any given optical setup. A number of well known high temperature thermographic phosphors were investigated including YAG:Tm, YAG:Tb and Y2O3:Eu from 20 °C in an excess of 1000 °C. Both 355 and 266 nm excitation wavelengths from a Q-switched Nd:YAG laser were used. The subsequent emissions were passed through a narrowband interference filter to isolate the peak emission wavelengths, and were collected using PMT. The methodology for an absolute measurement, which requires a sound understanding of the PMT, including solid angle, collection efficiency, dynode gain, calibration and electronic temporal response for intensity measurements is presented and discussed. The results clearly indicate a variation in phosphor intensity with an increasing temperature, which is considerably different amongst different phosphors under different excitation wavelengths. The combined standard uncertainty of measurement was estimated to be approximately ±10.7%. The existing system was able to monitor intensity values up to 900 °C for Mg3F2GeO4:Mn phosphors, 1100 °C for Y2O3:Eu, 1150 °C for YAG:Tb and up to 1400 °C for YAG:Tm thermographic phosphors. Y2O3:Eu using 266 nm excitation was found to exhibit the highest peak intensity per mJ of laser excitation from all the phosphors investigated at 20 °C. However, at high temperatures (900 °C+) YAG:Tm using 355 nm excitation was found to exhibit the highest peak intensity per mJ of an excitation energy.  相似文献   

13.
Multi-decade atmospheric OCS (carbonyl sulfide) infrared measurements have been analyzed with the goal of quantifying long-term changes and evaluating the consistency of the infrared atmospheric OCS remote-sensing measurement record. Solar-viewing grating spectrometer measurements recorded in April 1951 at the Jungfraujoch station (46.5°N latitude, 8.0°E longitude, 3.58 km altitude) show evidence for absorption by lines of the strong ν3 band of OCS at 2062 cm−1. The observation predates the earliest previously reported OCS atmosphere remote-sensing measurement by two decades. More recent infrared ground-based measurements of OCS have been obtained primarily with high-resolution solar-viewing Fourier transform spectrometers (FTSs). Long-term trends derived from this record span more than two decades and show OCS columns that have remained constant or have decreased slightly with time since the Mt. Pinatubo eruption, though retrievals assuming different versions of public spectroscopic databases have been impacted by OCS ν3 band line intensity differences of ∼10%. The lower stratospheric OCS trend has been inferred assuming spectroscopic parameters from the high-resolution transmission (HITRAN) 2004 database. Volume mixing ratio (VMR) profiles measured near 30°N latitude with high-resolution solar-viewing FTSs operating in the solar occultation mode over a 22 years time span were combined. Atmospheric Trace MOlecucle Spectroscopy (ATMOS) version 3 FTS measurements in 1985 and 1994 were used with Atmospheric Chemistry Experiment (ACE) measurements during 2004-2007. Trends were calculated by referencing the measured OCS VMRs to those of the long-lived constituent N2O to account for variations in the dynamic history of the sampled airmasses. Means and 1-sigma standard deviations of VMRs (in ppbv, or 10−9 per unit air volume) averaged over 30-100 hPa from measurements at 25-35°N latitude are 0.334±0.089 ppbv from 1985 (ATMOS Spacelab 3 measurements), 0.297±0.094 ppbv from 1994 ATLAS 3 measurements, 0.326±0.074 ppbv from ACE 2004 measurements, 0.305±0.096 ppbv from ACE 2005 measurements, 0.328±0.074 from ACE 2006 measurements, and 0.305±0.090 ppbv from ACE measurements through August 2007. Assuming these parameters, we conclude that there has been no statistically significant trend in lower stratospheric OCS over the measurement time span. We discuss past measurement sets, quantify the impact of changes in infrared spectroscopic parameters on atmospheric retrievals and trend measurements, and discuss OCS spectroscopic uncertainties of the current ν3 band parameters in public atmospheric databases.  相似文献   

14.
CuIn0.5Ga0.5Te2 (CIGT) thin films have been prepared by e-beam evaporation from a single crystal powder synthesized by direct reaction of constituent elements in a stoichiometric proportion. Post-depositional annealing has been carried out at 300 and 350 °C. The compositions of the films were determined by energy dispersive X-ray analysis (EDXA) and it was found that there was a remarkable fluctuation in atomic percentage of the constituent elements following to the post-depositional annealing. X-ray diffraction analysis (XRD) has shown that as-grown films were amorphous in nature and turned into polycrystalline structure following to the annealing at 300 °C. The main peaks of CuIn0.5Ga0.5Te2 and some minor peaks belonged to a binary phase Cu2Te appeared after annealing at 300 °C, whereas for the films annealed at 350 °C single phase of the CuIn0.5Ga0.5Te2 chalcopyrite structure was observed with the preferred orientation along the (1 1 2) plane. The effect of annealing on and near surface regions has been studied using X-ray photoelectron spectroscopy (XPS). The results indicated that there was a considerable variation in surface composition following to the annealing process. The transmission and reflection measurements have been carried out in the wavelength range of 200-1100 nm. The absorption coefficients of the films were found to be in the order of 104 cm−1 and optical band gaps were determined as 1.39, 1.43 and 1.47 eV for as-grown and films annealed at 300 and 350 °C, respectively. The temperature dependent conductivity and photoconductivity measurements have been performed in the temperature range of −73 to 157 °C and the room temperature resistivities were found to be around 3.4 × 107 and 9.6 × 106 (Ω cm) for the as-grown and annealed films at 350 °C, respectively.  相似文献   

15.
Phase transformation characteristics of a Ti-Ni-Pd shape memory thin film composition spread have been investigated. The thin film composition spread was fabricated from elemental targets using an ultra-high vacuum combinatorial magnetron sputter-deposition system and subsequent annealing at 500 °C for 1 h in situ. Automated temperature-dependent resistance measurements (R(T)), energy dispersive X-ray analysis (EDX) and X-ray diffraction measurements (XRD) have been applied for the high-throughput characterization of the composition spread. Reversible phase transformations within the measurement range of −40 to 250 °C within the Ti-Ni-Pd system were observed for compositions with Ti content between 50 and ∼59 at.%. For Ti-richer films, Ti2Ni and Ti2Pd precipitates are inhibiting reversible phase transformations. The transformation temperatures and the thermal hysteresis were determined from R(T) measurements. Rising transformation temperatures with increasing Pd content and significantly lower thermal hysteresis for the B2-B19, compared to the B2-R-B19′ transformations were found in good agreement with published data. For low Pd contents (<7-12 at.%, depending on the Ti content) two-stage B2-R-B19′ transformations were observed. Compositions with higher Pd contents showed a single-stage B2-B19 transformation. Increasing Ti content within the B2-B19 transformation region results in a linear increase of the thermal hysteresis and decreasing transformation temperatures.  相似文献   

16.
Sm-Co based nanomagnetic material was synthesized by means of a Pechini-type sol-gel process. In this method, a suitable gel-precursor was prepared using respective metal salts and complexing agent such as citric acid. The gel-precursor was dried at 300 °C and then subjected to various reductive annealing temperatures: 350, 500 and 600 °C. The nanopowders so obtained were characterized for their structure, phase composition and magnetic properties. FT-IR studies on the gel-precursor showed the binding of metal cations with the citrate molecules in the form of metal-citrate complex. The gel-precursor, which was annealed at 350 °C showed the presence of both meta-stable cobalt carbide (Co2C, Co3C) and Co3O4 phases; while the sample annealed at 500 °C indicated the sign of SmCo5 phase. Upon increasing the reductive annealing temperature to 600 °C, crystalline phase such as fcc-Co and Sm2C3 were formed prominently. FE-SEM analysis revealed the change in sample morphology from spherical to oblate spheres upon increasing the annealing temperature. VSM measurements demonstrated ferromagnetic nature at room temperature for all the nanopowders obtained irrespective of their after reductive annealing temperature.  相似文献   

17.
Magnetization and magnetic anisotropy measurements were made on single crystals of ErFe2 from 77°K to room temperature. The magnetic anisotropy is much larger than any previously reported for cubic metals. Based upon these measurements the magnetic anisotropies of the Laves phase RFe2 compounds (R = Tb, Dy, Ho and Tm) were predicted.  相似文献   

18.
A relatively thick (i.e., ∼9 nm) SiO2 layer can be formed by oxidation of Si with nitric acid (HNO3) vapor below 500 °C. In spite of the low temperature formation, the leakage current density flowing through the SiO2 layer is considerably low, and it follows the Fowler-Nordheim mechanism. From the Fowler-Nordheim plots, the conduction band offset energy at the SiO2/Si interface is determined to be 2.57 and 2.21 eV for HNO3 vapor oxidation at 500 and 350 °C, respectively. From X-ray photoelectron spectroscopy measurements, the valence band offset energy is estimated to be 4.80 and 4.48 eV, respectively, for 500 and 350 °C oxidation. The band-gap energy of the SiO2 layer formed at 500 °C (8.39 eV) is 0.68 eV larger than that formed at 350 °C. The higher band-gap energy for 500 °C oxidation is mainly attributable to the higher atomic density of the SiO2 layer of 2.46 × 1022/cm3. Another reason may be the absence of SiO2 trap-states.  相似文献   

19.
Magnetic materials play a key-role in magnetic induction hyperthermia for the treatment of cancer. In this paper, we analyse the magnetic properties of ferrimagnetic glass-ceramics with the composition in the system SiO2–Na2O–CaO–P2O5–FeO–Fe2O3, as a function of the melting temperature. These materials were obtained by melting of commercial reagents in the temperature range of 1400–1550 °C. Room-temperature magnetic measurements were performed by means of a vibrating sample magnetometer at room temperature. The power loss was determined from calorimetric measurements, using a magnetic induction furnace. The highest power loss (61 W/g) has been obtained for samples melted at 1500 °C. The heat generation of the ferrimagnetic glass-ceramics prepared by two different synthesis methods (traditional melting and coprecipitation-derived) will be compared. These materials are expected to be useful in the localised treatment of cancer.  相似文献   

20.
The thermal stability and measurement temperature dependence of Schottky contact characteristics on n-GaN using a W2B5/Ti/Au metallization scheme was studied using current-voltage (I-V), scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) measurements. The elemental profile obtained from samples annealed at 350 °C showed some titanium diffusion into the gold layer but little other difference from the as-deposited wafer. Annealing at 700 °C produced significant diffusion of titanium. The Schottky barrier height increased with anneal temperature up to 200 °C, reaching a maximum value of 0.65 eV, but decreased at higher annealing temperatures. The reverse breakdown voltage from diodes fabricated using the W2B5-based contacts showed a similar dependence. The reverse current magnitude was larger than predicted by thermionic emission alone. The barrier height showed only minor changes with measurement temperature up to 150 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号