首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A sensitive and specific method was developed for the determination of sophoridine (SRI), sophocarpine (SC) and matrine (MT) in rabbit plasma by HPLC-MS. After an administration of Kuhuang by injection, blood samples were collected and extracted with methanol. The extract solutions were analysed by HPLC-MS method. The separation was performed on a ZORBAX Extend-C18 column using methanol/water/diethylamine (50:50:0.07, v/v/v) as mobile phase. The quinolizidine alkaloids were detected by using mass spectrometry in the SIM mode. There was a good linear relationship between peak area and concentration of analytes over the concentration range of 13.2–995.0 ng mL–1 for SRI, 7.0–530.0 ng mL–1 for SC and 8.8–655.0 ng mL–1 for MT, respectively. The absolute recovery of this method was more than 57% for SRI, 87% for SC and 91% for MT. The accuracy of assay was more than 90%. The limits of detection (LODs) were 6.8 ng mL–1 for SRI, 3.5 ng mL–1 for SC and 4.2 ng mL–1 for MT, respectively. The limits of quantitation (LOQs) were 13.2 ng mL–1 for SRI, 7.0 ng mL–1 for SC and 8.8 ng mL–1 for MT, respectively. The intra-day and inter-day coefficients of variation (RSDs) were less than 10.1, 6.3 and 5.8% for SRI, SC and MT, respectively. The developed method was applied to determine the concentration–time profiles of SRI, SC and MT in rabbit plasma after injection of Kuhuang.  相似文献   

2.
A simple and specific HPLC method with dual wavelength UV detection for the determination of ergosta‐4,6,8(14),22‐tetraen‐3‐one (ergone) in rat plasma was developed and proved to be efficient. The method used ergosterol as internal standard (IS). Following a single‐step protein precipitation, the analyte and IS were separated on an Inertsil ODS‐3 column with a mobile phase containing methanol–water (99:1, v/v) at a flow rate of 1 mL/min. The analytes were detected by using UV detection at wavelength of 350 (ergone) and 283 (IS) nm, respectively. The calibration curve was linear over the range of 0.1–2.0 µg/mL and the lower limit of quantification was 0.1 µg/mL. The intra‐day and inter‐day precision studies showed good reproducibility with RSD less than 8.5%. The intra‐day and inter‐day accuracy ranged from 95.6 to 104%. Mean extraction recovery was above 95% at the low, medium and high concentrations. The present HPLC‐UV method was simple and reliable. The method described herein had been successfully applied for the pharmacokinetic studies in male SD rats after administration of 20 mg/kg dose of solution of ergone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid, simple, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous estimation of atorvastatin (ATO), amlodipine (AML), ramipril (RAM) and benazepril (BEN) using nevirapine as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. Analytes and IS were extracted from plasma by simple liquid–liquid extraction technique using ethyl acetate. The reconstituted samples were chromatographed on C18 column by pumping 0.1% formic acid–acetonitrile (15:85, v/v) at a flow rate of 1 mL/min. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 0.26–210 ng/mL for ATO; 0.05–20.5 ng/mL for AML; 0.25–208 ng/mL for RAM and 0.74–607 ng/mL for BEN with mean correlation coefficient of ≥0.99 for each analyte. The intra‐day and inter‐day precision and accuracy results were well with in the acceptable limits. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The developed assay method was successfully applied to a pharmacokinetic study in human male volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A simple, specific, and sensitive liquid chromatography–mass spectrometry (LC‐MS) method for determination of cyasterone in rat plasma was developed in our laboratory. Cucurbitacin B was used as an internal standard (IS). After protein precipitation with twofold volume of acetonitrile, the analyte and IS were separated on a Luna C18 column (100 × 4.6 mm, i.d., 3.0 µm; Phenomenex) by isocratic elution with acetonitrile–water (80:20, v/v) as the mobile phase at a flow rate of 0.4 mL/min. An electrospray ionization source was applied and operated in the positive ion mode; selected ion monitoring scan mode was used for quantification, and the target ions m/z 543.3 for cyasterone and m/z 581.3 for IS were chosen. Good linearity was observed in the concentration range of 0.40–400 ng/mL for cyasterone in rat plasma. Intra‐day and inter‐day precision were both <7.4%. This method was proved to be suitable for pharmacokinetic studies after oral (5.0 mg/kg) or intravenous (0.5 mg/kg) administration of cyasterone in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A reliable and high throughput high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated for determining levels of the antitubercular drug-d -cycloserine in human plasma. Plasma samples analyte with an internal standard (IS) (niacin) were prepared by solid-phase extraction using Waters Oasis MCX cartridges. The chromatographic separation was performed using the HILIC mode on a YMC-Pack SIL-06 column (150?×?4.6 mm; 3 μm) under isocratic conditions. The run time of analysis was 5 min. The mobile phase consisted of methanol, propanol-2 and 0.075 % trifluoroacetic acid (66.5:28.5:5, v/v/v). Protonated ions formed by turbo ion spray in positive mode were used to detect the analyte and the IS. MS/MS detection was used to monitor the fragmentation of 103–75?m/z for cycloserine and 124 to 80?m/z for niacin (IS) on an API 4000 (AB Sciex) triple quadrupole mass spectrometer. A linear dynamic range of 0.3–30 μg/mL was established for cycloserine using 0.2 mL human plasma and a 1 μL injection volume. The mean relative recovery of cycloserine and niacin were 77.2 and 82.4 %, respectively. The procedure of sample preparation was consistent and reproducible (precision, 0.8–3.4 %; accuracy, 93.8–104.9 %). The method was validated in accordance with requirements of the European Medicines Agency and successfully applied to a bioequivalence study of 250 mg tablet formulations in 23 healthy human subjects.  相似文献   

6.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A rapid, sensitive and specific method for quantifying piracetam in human plasma using Piracetam d‐8 as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by one‐step precipitation of protein using an acetonitrile (100%). The extracts were analyzed by high‐performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC‐MS/MS). The method had a chromatographic run time of 3.8 min and a linear calibration curve over the range 0.5–50 µg/mL (r > 0.99). This LC‐MS‐MS procedure was used to assess the bioavailability of two piracetam formulations: piracetam + l‐carnitine (Piracar®; 270/330 mg tablet) and piracetam (Nootropil®; 800 mg tablet) in healthy volunteers of both sexes. The geometric means with corresponding 90% confidence interval (CI) for test/reference percentage ratios were 88.49% (90% CI = 81.19 – 96.46) for peak concentration/dose and 102.55% (90% CI = 100.62 – 104.51) for AUCinf/dose. The limit of quantitation of 0.5 µg/mL is well suited for pharmacokinetic studies in healthy volunteers. It was concluded that piracetam (Piracar®; 270/330 mg tablet) has a bioavailability equivalent to the piracetam (Nootropil®; 800 mg tablet) formulation with regard to both the rate and the extent of absorption. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid and sensitive analytical method based on liquid chromatography coupled to tandem mass spectrometry detection with positive ion electrospray ionization was developed for the determination of febuxostat in human plasma using d7‐febuxostat as the internal standard (IS). A simple protein precipitation was performed using acetonitrile. The analyte and IS were subjected to chromatographic analysis on a Capcell PAK C18 column (4.6 × 100 mm, 5 µm) using acetonitrile–5 mm ammonium acetate–formic acid (85:15:0.015, v/v/v) as the mobile phase at a flow rate of 0.6 mL/min. An Agilent 6460 electrospray tandem mass spectrometer was operated in the multiple reaction monitoring mode. The precursor‐to‐product ion transitions m/z 317 → m/z 261 (febuxsotat) and m/z 324 → m/z (261 + 262) (d7‐febuxostat, IS) were used for quantitation. The results were linear over the studied range (10.0–5000 ng/mL), and the total analysis time for each chromatograph was 3 min. The intra‐ and inter‐day precisions were less than 7.9 and 7.2%, respectively, and the accuracy was within ±4.2%. No evidence of analyte instability in human plasma was observed storage at ?20°C for 31 days. This method was successfully applied in the determination of febuxostat concentrations in plasma samples from healthy Chinese volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A highly sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for the determination of limonin in beagle dog plasma using nimodipine as internal standard. The analyte and internal standard (IS) were extracted with ether followed by a rapid isocratic elution with 10 mm ammonium acetate buffer–methanol (26:74, v/v) on a C18 column (150 × 2.1 mm i.d.) and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode. The precursor to product ion transitions of m/z 469.4 → 229.3 and m/z 417.2 → 122.0 were used to measure the analyte and the IS. The assay was linear over the concentration range of 0.625–100 ng/mL for limonin in dog plasma. The lower limit of quantification was 0.312 ng/mL and the extraction recovery was >90.4% for limonin. The inter‐ and intra‐day precision of the method at three concentrations was less than 9.9%. The method was successfully applied to pharmacokinetic study of limonin in dogs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

11.
An LC‐MS/MS method for the simultaneous quantitation of niacin (NA) and its metabolites, i.e. nicotinamide (NAM), nicotinuric acid (NUA) and N‐methyl‐2‐pyridone‐5‐carboxamide (2‐Pyr), in human plasma (1 mL) was developed and validated using nevirapine as an internal standard (IS). Extraction of the NA and its metabolites along with the IS from human plasma was accomplished using a simple liquid–liquid extraction. The chromatographic separation of NA, NAM, NUA, 2‐Pyr and IS was achieved on a Hypersil‐BDS column (150 ¥ 4.6 mm, 5 mm) column using a mobile phase consisting of 0.1% formic acid : acetonitrile (20:80 v/v) at a flow rate of 1 mL/min. The total run time of analysis was 2 min and elution of NA, NAM, NUA, 2‐Pyr and IS occurred at 1.37, 1.46, 1.40, 1.06 and 1.27 min, respectively. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 100–20000 ng/mL for NA; 10–1600 ng/mL for NUA and NAM and 50–5000 ng/mL for 2‐Pyr with mean correlation coefficient of ≥0.99 for each analyte. The method was sensitive, specific, precise, accurate and suitable for bioequivalence and pharmacokinetic studies. The developed assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In the present study a simple, fast, sensitive and robust method to quantify mirtazapine in human plasma using quetiapine as the internal standard (IS) is described. The analyte and the IS were extracted from human plasma by a simple protein precipitation with methanol and were analyzed by high‐performance liquid chromatography coupled to an electrospray tandem triple quadrupole mass spectrometer (HPLC‐ESI‐MS/MS). Chromatography was performed isocratically on a C18, 5 µm analytical column and the run time was 1.8 min. The lower limit of quantitation was 0.5 ng/mL and a linear calibration curve over the range 0.5–150 ng/mL was obtained, showing acceptable accuracy and precision. This analytical method was applied in a relative bioavailability study in order to compare a test mirtazapine 30 mg single‐dose formulation vs a reference formulation in 31 volunteers of both sexes. The study was conducted in an open randomized two‐period crossover design and with a 14 day washout period. Since the 90% confidence interval for Cmax, AUClast and AUC0–inf were within the 80–125% interval proposed by the Food and Drug Administration and ANVISA (Brazilian Health Surveillance Agency), it was concluded that mirtazapine 30 mg/dose is bioequivalent to the reference formulation, according to both the rate and extent of absorption. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A selective, rapid, and sensitive liquid chromatography–tandem mass spectrometry(LC‐MS/MS) method was developed and validated for the determination of letrozole (LTZ) in human plasma, using anastrozole as internal standard (IS). Sample preparation was performed by one‐step protein precipitation with methanol. The analyte and IS were chromatographed on a reversed‐phase YMC‐ODS‐C18 column (2.0 × 100 mm i.d., 3 µm) with a flow rate of 0.3 mL/min. The mobile phase consisted of water containing 0.1% formic acid (v/v) and methanol containing 0.1% formic acid (v/v). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 286.2 → 217.1 for LTZ and m/z 294.1 → 225.1 for IS, respectively. The method was validated for selectivity, linearity, lower limit of quantitation, precision, accuracy, matrix effects and stability in accordance with the US Food and Drug Administration guidelines. Linear calibration curves were 1.0–60.0 ng/mL. Intra‐ and inter‐batch precision (CV) for LTZ were <9.34%, and the accuracy ranged from 97.43 to 105.17%. This method was successfully used for the analysis of samples from patients treated with LTZ in the dose of 2.5 mg/day. It might be suitable for therapeutic drug monitoring of these patients and contribute to predict the risk of adverse reactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, rapid and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for the determination of alosetron (ALO) in human plasma. The assay method involved solid‐phase extraction of ALO and ALO 13C‐d3 as internal standard (IS) on a LichroSep DVB‐HL (30 mg, 1 cm3) cartridge. The chromatography was performed on an Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile and 2.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (80:20, v/v) as the mobile phase in an isocratic mode. For quantitative analysis, the multiple reaction monitoring transitions studied were m/z 295.1/201.0 for ALO and m/z 299.1/205.1 for IS in the positive ionization mode. The method was validated over a concentration range of 0.01–10.0 ng/mL for ALO. Post‐column infusion experiment showed no positive or negative peaks in the elution range of the analyte and IS after injection of extracted blank plasma. The extent of ion‐suppression/enhancement, expressed as IS‐normalized matrix factor, varied from 0.96 to 1.04. The assay recovery was within 97–103% for ALO and IS. The method was successfully applied to support a bioequivalence study of 1.0 mg alosetron tablets in 28 healthy Indian male and female subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, high‐throughput and specific high‐performance liquid chromatography–tandem mass spectrometry method has been developed and validated according to the FDA guidelines for quantification of ulifloxacin in rat and rabbit plasma. The analyte was separated on a Peerless basic C18 column (33 × 4.6 mm, 3 µm) with an isocratic mobile phase of methanol–water containing formic acid (0.5%, v/v; 9:1, v/v) at a flow rate of 0.5 mL/min. The MS/MS detection was carried out by monitoring the fragmentation of m/z 350.500 → 248.500 for ulifloxacin and m/z 332.400 → 231.400 for ciprofloxacin (internal standard; IS) on a triple quadrupole mass spectrometer. The response to ulifloxacin was linear over the range 0.010–2.500 µg/mL in both plasma. The limit of detection and lower limit of quantification of ulifloxacin were determined in both species to be 0.0025 and 0.010 µg/mL, respectively. The method was successfully applied to quantitatively assess the toxicokinetics of ulifloxacin in rat and rabbit following a single 400 mg/kg (in rat) and 200 mg/kg (in rabbit) oral dose of the prulifloxacin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Tedizolid (TDZ) is a novel oxazolidinone class antibiotic, indicated for the treatment of acute bacterial skin and skin structure infections in adults. In this study a highly sensitive UPLC‐MS/MS assay was developed and validated for the determination of TDZ in rat plasma using rivaroxaban as an internal standard (IS). Both TDZ and IS were separated on an Acquity UPLC BEH? C18 column using an isocratic mobile phase comprising of acetonitrile–20 mm ammonium acetate (85:15, v/v), eluted at 0.3 mL/min flow rate. The plasma sample was processed by liquid liquid extraction technique using ethyl acetate as an extracting agent. The analyte and IS were detected in positive mode using electrospray ionization source. The precursor to product ion transitions at m/z 371.09 > 343.10 for TDZ and m/z 435.97 > 144.94 for IS were used for the quantification in multiple reaction monitoring mode. The calibration curve was linear in the concentration range of 0.74–1500 ng/mL and the lower limit of quantification was 0.74 ng/mL only. The developed assay was validated following standard guidelines for bioanalytical method validation (US Food and Drug Administration) and all the validation results were within the acceptable limits. The developed assay was successfully applied into a pharmacokinetic study in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, sensitive and reliable LC–MS/MS method was developed and validated for the quantification of anemoside B4, a potential antiviral constituent isolated from Pulsatilla chinensis in rat plasma, tissue, bile, urine and feces. All biological samples were prepared by protein precipitation method, and ginsenoside‐Rg1 was chosen as the internal standard (IS). The analyte and IS were separated using a C18 column (2.1 × 50 mm, 1.8 μm) and a mobile phase consisting of 0.1% formic acid in water (v /v) and acetonitrile running at a flow rate of 0.2 mL/min for 5 min. The multiple reaction monitoring transitions were monitored at m /z 1219.5–749.5 for anemoside B4 and 845.4–637.4 for ginsenoside‐Rg1 in electrospray ionization negative mode. The calibration curve was linear in the range of 10–2000 ng/mL for all biological matrices with a lower limit of quantification of 10 ng/mL. The validated method was successfully applied to a pharmacokinetics, tissue distribution and excretion study. These preclinical data will be beneficial for further development of anemoside B4 in future studies.  相似文献   

18.
A sensitive LC–MS/MS method for the determination of bruceine D in rat plasma was developed. The analyte and IS were separated on a Luna C18 column (2.1 × 50 mm, 1.7 μm) using a mobile phase of acetonitrile and 0.1% formic acid in water (40:60, v/v) at a flow rate of 0.25 mL/min. The selected reaction monitoring mode was chosen to monitor the precursor‐to‐product ion transitions of m/z 409.2 → 373.2 for bruceine D and m/z 469.2 → 229.3 for IS using a negative ESI mode. The method was validated over a concentration range of 0.5–2000 ng/mL for bruceine D. Total chromatography time for each run was 3.5 min. The method was successfully applied to a pharmacokinetic study of bruceine D in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A fast and sensitive high performance liquid chromatography coupled with mass spectrometry (LC‐MS) method was developed and validated for the determination of cyclophosphamide in rat plasma with and without the combination of vitamin B6. After addition of digoxin used as the internal standard (IS), plasma samples were extracted by protein precipitation with acetonitrile (1:1, v/v), and the analytes were separated by a Kromasil C18 column (150 × 4.6 mm, 5 µm) with a mobile phase of acetonitrile–0.1% formic acid water (40:60, v/v). The detection of the analyte was monitored in positive electrospray ionization by selected ion monitoringmode. The linear range was 0.01–40 µg/mL for cyclophosphamide. The intra‐ and inter‐day precision and accuracy were all <15%. The extraction recoveries and matrix effects of the analyte and IS were all within acceptable range. The selectivity of the method was satisfactory with no endogenous interference. The results for stabilities of cyclophosphamide and IS under various conditions were all within the acceptance criteria. The validated method was successfully applied to evaluate the drug–drug interaction of cyclophosphamide and vitamin B6 in rat plasma. The results showed no differences of pharmacokinetic behaviors between cyclophosphamide administration with and without vitamin B6. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
An accurate and precise method was developed and validated using LC‐MS/MS to quantify dutasteride in human plasma. The analyte and dutasteride‐13C6 as internal standard (IS) were extracted from 300 μL plasma volume using methyl tert‐butyl ether–n‐hexane (80:20, v/v). Chromatographic analysis was performed on a Gemini C18 (150 × 4.6 mm, 5 µm) column using acetonitrile–5 mm ammonium formate, pH adjusted to 4.0 with formic acid (85:15, v/v) as the mobile phase. Tandem mass spectrometry in positive ionization mode was used to quantify dutasteride by multiple reaction monitoring. The entire data processing was done using Watson LIMSTM software, which provided excellent data integrity and high throughput with improved operational efficiency. The calibration curve was linear in the range of 0.1–25 ng/mL, with intra‐and inter‐batch values for accuracy and precision (coefficient of variation) ranging from 95.8 to 104.0 and from 0.7 to 5.3%, respectively. The mean overall recovery across quality controls was ≥95% for the analyte and IS, while the interference of matrix expressed as IS‐normalized matrix factors ranged from 1.01 to 1.02. The method was successfully applied to support a bioequivalence study of 0.5 mg dutasteride capsules in 24 healthy subjects. Assay reproducibility was demonstrated by reanalysis of 103 incurred samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号