首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Topochemical synthesis of gold nanoparticles (AuNPs) was achieved on crystalline cellulose single nanofibers (CSNFs), which were tailored from native cellulose. Exposed AuNPs@CSNFs composite exhibited an excellent catalytic efficiency: the turnover frequency of the AuNPs@CSNFs was up to 840 times that of conventional polymer-supported AuNPs, for a model aqueous reduction reaction. Our novel strategy provides a promising solution to realize efficient use of limited noble metals using natural bioresources.  相似文献   

2.
3.
The freshly prepared water-wet amidoximated bacterial cellulose (Am-BC) serves as an effective nanoreactor to synthesis zinc oxide nanoparticles by in situ polyol method. The obtained ZnO/Am-BC nanocomposites have been characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The influence of the zinc acetate concentration on the morphologies and size ofZnO nanoparticles and the possible formation mechanism were discussed. The results indicated that uniform ZnO nanoparticles were homogeneously anchored on the Am-BC nanofibers through strong interaction between the hydroxyl and amino groups of Am-BC and ZnO nanoparticles. The loading content of ZnO nanoparticles is higher using Am-BC as a template than using the unmodified bacterial cellulose. The resultant nanocomposite synthesized at 0.05 wt% shows a high photocatalytic activity (92%) in the degradation of methyl orange.  相似文献   

4.
Wang  Ke  Hazra  Raj Shankar  Ma  Qian  Jiang  Long  Liu  Zhaohui  Zhang  Yuanming  Wang  Shudong  Han  Guangting 《Cellulose (London, England)》2022,29(3):1647-1666
Cellulose - Silk fibroin (SF) has been intensively studied as a biobased renewable material for biomedical and other applications. However, its relatively low mechanical properties have limited its...  相似文献   

5.
Cellulose nanofibers (CNFs), derived from the most abundant and renewable biopolymer, are known as natural one-dimensional nanomaterials because of their high aspect ratio. CNFs also are rich in hydroxyl groups, offering opportunities for functionalization toward development of high-value nanostructured composites. Herein, CNFs were extracted from poplar wood powder by chemical pretreatment combined with high-intensity ultrasonication, and then coated with polyaniline (PANI) through in situ polymerization. The PANI-coated CNFs formed nanostructured frameworks around PANI, thereby conferring the CNF/PANI composite with stability and higher charge transport. The optimum PANI content to achieve maximum conductivity of CNF/PANI composites was determined. The morphology, crystall structure, chemical composition, and conductivity of the samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and four-point probe method, respectivily. Our results demonstrated that CNFs can be effective as a template for a flexible and stable conducting polymer to form higher-order nanostructures.  相似文献   

6.

Eucalyptus cellulose is usually pre-treated by oxidation with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), NaBr and NaClO at pH 10.5 and 25 °C before the mechanical process required to obtain cellulose nanofibers (CNFs). In this study, different aspects to improve the effectiveness and sustainability of the TEMPO-mediated oxidation are analyzed. The optimization was carried out at different reaction times by modifying both the concentration of the NaClO and the amount of the catalysts (TEMPO and NaBr). Results show that the carboxyl groups increased up to 1.1 mmol/g with 5 mmol NaClO/g after 50 min, and that the catalyst concentration can be reduced to 0.025 mmol TEMPO/g and 0.5 mmol NaBr/g to minimize costs while maintaining the high fibrillation degree of the CNFs. The kinetic of the reaction can be considered as zero-order with respect to NaClO, and as first order with respect to cellulose. As a result of this work, the catalyst doses are reduced up to 75% compared to the most widely used catalyst doses (0.1 mmol/g TEMPO and 1 mmol/g NaBr), obtaining highly fibrillated CNFs with a lower environmental impact. This reduction of catalyst doses will reduce the costs and facilitate the implementation of CNF production at industrial scale.

Graphical abstract
  相似文献   

7.
In this paper, a new method is introduced for producing multi-functional cellulose nanofibers in order to achieve the biodegradable materials for various applications with a minimal amount of potentially toxic materials. Cellulose nanofibers (CNFs) were fabricated by electrospinning cellulose acetate solution followed by deacetylation. The CNFs were then treated with silver nitrate, ammonia, and sodium hydroxide and subsequently with dopamine as reducing and adhesive agent. Ag ions on the CNF surface were photo-reduced to Ag nanoparticles (NPs) using UVA irradiation to produce a dense layer of silver nanoparticles on the nanofibers. This is based on the simultaneous formation of polydopamine and Ag NPs on CNFs. Overall, this is a fast, simple, and efficient procedure that takes place in a conventional method at ambient temperature. The crystalline structure of CNFs decorated with AgNPs was studied by X-ray diffraction. Field-emission scanning electron microscopy and energy-dispersive X-ray patterns showed uniform distribution of silver nanoparticles on the CNF surface. Incorporation of AgNPs on the CNF surface via dopamine improved the electrical conductivity and also the tensile strength of the nanomat. The CNFs decorated with AgNPs exhibited a low electrical resistivity around 35 KΩ/square and a tensile strength of 87% higher than untreated CNFs.  相似文献   

8.
Collagen and cellulose nanofiber based composites were prepared by solution casting followed by pH induced in situ partial fibrillation of collagen phase and crosslinking of collagen phase using gluteraldehyde. Microscopy studies on the materials confirmed the presence of fibrous collagen and cellulose nanofibers embedded in the collagen matrix. The cellulose nanofiber addition as well as collagen crosslinking showed significant positive impact on the nanocomposite’s mechanical behaviour. The synergistic performance of the nanocomposites indicated stabilization and reinforcement through strong physical entanglement between collagen and cellulose fibres as well as chemical interaction between collagen matrix and collagen fibrils. The mechanical performance and stability in moist conditions showed the potential of these materials as implantable scaffolds in biomedical applications. The collagen-cellulose ratio, crosslinking agent and crosslinking level of collagen may be further optimised to tailor the mechanical properties and cytocompatibility of these composites for specific applications such as artificial ligament or tendon.  相似文献   

9.
10.

Bioactive glasses (BGs) have gained great attention owing to their versatile biological properties. Combining BG nanoparticles (BGNPs) with polymeric nanofibers produced nanocomposites of great performance in various biomedical applications especially in regenerative medicine. In this study, a novel nanocomposite nanofibrous system was developed and optimized from cellulose acetate (CA) electrospun nanofibers containing different concentrations of BGNPs. Morphology, IR and elemental analysis of the prepared electrospun nanofibers were determined using SEM, FT-IR and EDX respectively. Electrical conductivity and viscosity were also studied. Antibacterial properties were then investigated using agar well diffusion method. Moreover, biological wound healing capabilities for the prepared nanofiber dressing were assessed using in-vivo diabetic rat model with induced wounds. The fully characterized CA electrospun uniform nanofiber (100–200 nm) with incorporated BGNPs exhibited broad range of antimicrobial activity against gram negative and positive bacteria. The BGNP loaded CA nanofiber accelerated wound closure efficiently by the 10th day. The remaining wound areas for treated rats were 95.7?±?1.8, 36.4?±?3.2, 6.3?±?1.5 and 0.8?±?0.9 on 1st, 5th, 10th and 15th days respectively. Therefore, the newly prepared BGNP CA nanocomposite nanofiber could be used as a promising antibacterial and wound healing dressing for rapid and efficient recovery.

  相似文献   

11.
《Arabian Journal of Chemistry》2020,13(11):7921-7938
Monometallic ZnO nanoparticles were prepared by hydrolysis of zinc acetate with ammonium hydroxide solution. Bimetallic zinc-silver nanoparticles (ZnO-AgNPs) were prepared using metal displacement galvanic cell reaction in presence of cetyltrimethylammonium bromide (CTAB). The optical and photo-physical properties of both NPs were determined. Surface plasmon resonance (SPR) intensity of ZnO-AgNPs depends on the ratio of metal salt precursors and other experimental conditions. The optical band gap (2.98 eV), agglomeration number (26819.92), and molar concentration (1.14 × 10−4 mol/liter) of ZnO-AgNPs were determined. Langmuir adsorption monolayer, Freundlich, intraparticles diffusion and multilayer adsorption isotherms used for the determination of maximum adsorption efficiency and adsorption isotherm parameters to the removal of safranin dye from an aqueous solution. The kinetics of safranin removal has also been discussed with pseudo-first order, pseudo-second order, intraparticle diffusion and multilayer kinetic models. The antibacterial and antifungal activities of ZnO, Ag and ZnO-AgNPs were determined against human pathogens using growth kinetic and disk diffusion methods. The concentrations of ZnO-AgNPs have significant effect on the bacterial growth kinetics. The death rate constants increase with increasing the NPs concentrations. It has been found that the ZnO-AgNPs hold higher microbial activities than that of monometallic counterpart, ZnO and AgNPs. Mechanism of bacterial growth and death was discussed.  相似文献   

12.
Nanocomposite films consisting of cellulose nanofibrils (CNFs), magnesium hydroxide nanoplatelets (MHNPs) and regenerated cellulose were prepared via simple blending and casting processes. The CNFs were obtained from bamboo pulp by ultrasonic treatment coupled with high shear homogenization. The morphology, structure and properties of the nanocomposite films were comprehensively analyzed using various characterization techniques, including the scanning electron microscope, digital microscope, limiting oxygen index (LOI), micro-scale combustion calorimetry, antibacterial assays, tensile testing, etc. When the MHNP content was optimized to 30 wt%, the nanocomposite film exhibited the best overall properties. The LOI of the composite film increased from 20.0 (0 wt% MHNPs) to 32.7 (30 wt% MHNPs), making it a flame-retardant material in air. In addition, the film containing 30 wt% MHNPs showed excellent antibacterial activity. However, the increase in MHNP content would result in gradual deterioration of the films’ mechanical properties. However, the incorporation of CNFs could significantly suppress this trend. The present work provided a promising pathway for manufacturing multifunctional and high-performance cellulose-based composite films, which were potentially useful for a variety of packaging materials, especially in the biomedical and food packaging fields.  相似文献   

13.
We have measured the force between a weakly charged micron-sized colloidal particle and flat substrate in the presence of highly charged nanoparticles of the same sign under solution conditions such that the nanoparticles physically adsorb to the colloidal particle and substrate. The objective was to investigate the net effect on the force profile between the microparticle and flat substrate arising from both nanoparticle adsorption and nanoparticles in solution. The experiments used colloidal probe atomic force microscopy (CP-AFM) to measure the force profile between a relatively large (5 μm) colloidal probe glass particle and a planar glass substrate in aqueous solutions at varying concentrations of spherical nanoparticles. At very low nanoparticle concentrations, the primary effect was an increase in the electrostatic repulsion between the surfaces due to adsorption of the more highly charged nanoparticles. As the nanoparticle concentration is increased, a depletion attraction formed, followed by longer-range structural forces at the highest nanoparticle concentrations studied. These results suggest that, depending on their concentration, such nanoparticles can either stabilize a dispersion of weakly-charged colloidal particles or induce flocculation. This behavior is qualitatively different from that in nonadsorbing systems, where the initial effect is the development of an attractive depletion force.  相似文献   

14.
Cellulose phosphonate was added to N,N-dimethylacrylamide (A) and 4-vinylpyridine (B) in the presence of sodium ethoxide to yield cellulose 2-(N,N-dimethyl)carbamoylethylphosphonate and cellulose 2-pyridinylethylphosphonate, respectively. The extent of the addition was 50% for (A) and 10% for (B), based on P—H bonds in cellulose phosphonate. The modification of cellulose with (A) resulted in an increase in the threshold temperature for weight loss, a decrease in the amount of residual products, and retardation of deammoniation of ammonium salts of the products. Modification of (B) resulted in a lower threshold temperature and amount of residue and an acceleration of the oxidation of cellulose chains. Cellulose phosphonate fabrics modified with (A) had powerful flame-retardant properties. It was deduced that the combination of phosphoryl and amide groups was an effectual flame retardant.  相似文献   

15.
16.
Isolation and characterization of cellulose nanofibers from banana peels   总被引:2,自引:0,他引:2  
Cellulose nanofibers were isolated from banana peel using a combination of chemical treatments, such as alkaline treatment, bleaching, and acid hydrolysis. The suspensions of chemically treated fibers were then passed through a high-pressure homogenizer 3, 5, and 7 times, to investigate the effect of the number of passages on the properties of the resulting cellulose nanofibers. The cellulose nanofibers isolated in this study had a dry basis yield of 5.1 %. Transmission electron microscopy showed that all treatments effectively isolated banana fibers in the nanometer scale. The micrographs of the process steps used to isolate the nanofibers revealed gradual removal of amorphous components. Increasing number of passages in the homogenizer shortened the cellulose nanofibers while furnishing more stable aqueous suspensions with zeta potential values ranging from ?16.1 to ?44.1 mV. All the samples presented aspect ratio in the range of long nanofibers, hence being potentially applicable as reinforcing agents in composites. X-ray diffraction studies revealed that homogenized nanofiber suspensions were more crystalline than non-homogenized suspensions. Fourier transform infrared spectroscopy confirmed that alkaline treatment and bleaching removed most of the hemicellulose and lignin components present in the banana fibers. Thermal analyses revealed that the developed nanofibers exhibit enhanced thermal properties. In general, the nanoparticles isolated from the banana peel have potential application as reinforcing elements in a variety of polymer composite systems.  相似文献   

17.
The aim of this study was to synthesize hydrophobic cellulose nanofibers (CNFs) using different chemical treatments including polymer and molecular grafting. For polymer grafting, immobilizing poly (butyl acrylate) (PBA) and poly (methyl methacrylate) (PMMA) on CNFs were implemented by the free radical method. Also, acetyl groups were introduced directly onto the CNFs surface by acetic anhydride for molecular grafting. The gravimetric and X-ray photoelectron spectroscopy analysis showed the high grafting density of PMMA on the surface of CNFs. AFM results revealed that molecular grafting created non-uniformity on the CNFs surface, as compared to polymer brushes. In addition, thermodynamic work of adhesion and work of cohesion for the modified CNFs were reduced in water and diiodomethane solvents. Dispersion factor was studied to indicate the dispersibility of CNFs in polar and non-polar media. Dispersion energy was reduced after modification as a result of decreasing interfacial tension and the dispersibility of modified CNFs was improved in diiodomethane.  相似文献   

18.
19.
Cellulose nanofibers (CNFs) were isolated from four kinds of plant cellulose fibers by a chemical-ultrasonic treatment. The chemical composition, morphology, crystalline behavior, and thermal properties of the nanofibers and their intermediate products were characterized and compared. The CNFs extracted from wood, bamboo, and wheat straw fibers had uniform diameters of 1040 nm, whereas the flax fibers were not uniformly nanofibrillated because of their initially high cellulose content. The chemical composition of each kind of nanofibers was mainly cellulose because hemicelluloses and lignin were significantly removed during chemical process. The crystallinity of the nanofibers increased as the chemical treatments were applied. The degradation temperature of each kind of nanofiber reached beyond 330 °C. Based on the properties of the CNFs, we expect that they will be suitable for use in green nanocomposites, filtration media and optically transparent films.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号