首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we present the synthesis of anatase–silica aerogels based on the controlled gelation of preformed nanoparticle mixtures. The monolithic aerogels with macroscopic dimensions show large specific surface areas, and high and uniform porosities. The major advantage of such a particle-based approach is the great flexibility in pre-defining the compositional and structural features of the final aerogels before the gelation process by fine-tuning the properties of the titania and silica building blocks (e.g., size, composition and crystallinity) and their relative ratio in the dispersion. Specific surface functionalization enables control over the interaction between the nanoparticles and thus over their distribution in the aerogel. Positively charged titania nanoparticles are co-assembled with negatively charged Stoeber particles, resulting in a binary aerogel with a crystalline anatase and amorphous silica framework directly after supercritical drying without any calcination step. Titania–silica aerogels combine the photocatalytic activity of the anatase nanoparticles with the extensive silica chemistry available for silica surface functionalization.  相似文献   

2.
Spherical silica particles doped with iron oxide have been synthesized via base-catalyzed one-pot sol?Cgel process using tetraethoxysilane (TEOS) and iron(III) ethoxide (ITE) as co-precursors. In the modified St?ber process adopted, depending on the concentration of ITE in the starting composition, materials of various morphologies were observed under a scanning electron microscope and an atomic force microscope. The presence of ITE significantly affected the formation process of particulate silica; the spherical particles were formed accompanied by the co-presence of irregular-shaped finer aggregates. The fraction of the aggregates with rough surfaces increased with an increase of the ITE content in the reaction mixture. Both the spherical particles and irregular-shaped aggregates contained iron hydroxide and they exhibited paramagnetic behavior. The chemical composition and physicochemical properties of the materials were determined using various complementary spectroscopic methods.  相似文献   

3.
4.
Organic aerogels based on two important and widely abundant renewable resources, soy proteins (SP) and nanofibrillar cellulose (NFC) are developed from precursor aqueous dispersions and a facile method conducive of channel- and defect-free systems after cooling and freeze-drying cycles that yielded apparent densities on the order of 0.1 g/cm3. NFC loading drives the internal morphology of the composite aerogels to transition from network- to fibrillar-like, with high density of interconnected cells. Composite aerogels with SP loadings as high as ca. 70 % display a compression modulus of 4.4 MPa very close to that obtained from reference, pure NFC aerogels. Thus, the high compression modulus of the composite system is not compromised as long as a relatively low amount of reinforcing NFC is present. The composite materials gain moisture (up to 5 %) in equilibrium with 50 % RH air, independent of SP content. Furthermore, their physical integrity is unchanged upon immersion in polar and non-polar solvents. Fast liquid sorption rates are observed in the case of composite aerogels in contact with hexane. In contrast, water sorption is modulated by the chemical composition of the aerogel, with an important contribution from swelling. The potential functionalities of the newly developed SP–NFC composite green materials can benefit from the reduced material cost and the chemical features brought about the amino acids present in SPs.  相似文献   

5.
In this study, ethanol–ammonium recovery using a distillation system was evaluated. The experimental design was used to evaluate the possibility of solvent re-use and the influence of distillation on the recovery yield, ethanol–ammonium ratio (catalyst concentration) and size of the obtained nanostructures. The synthesised silica nanospheres from distilled ethanol–ammonium were compared in terms of size and shape (ammonium concentration) to the nanostructures obtained from filtrated and centrifuged solvents. The results showed that the process for ethanol–ammonium recovery proposed in this work, provides a large potential for reducing the amount of waste from the synthesis.  相似文献   

6.
7.
Halloysite nanotubes (HNTs) were added to cellulose NaOH/urea solution to prepare composite hydrogels using epichlorhydrine crosslinking at an elevated temperature. The shear viscosity, mechanical properties, microstructure, swelling properties, cytocompatibility, and drug delivery behavior of the cellulose/HNT composite hydrogels were investigated. The viscosity of the composite solution increases with the addition of HNT. The compressive mechanical properties of composite hydrogels are significantly improved compared with pure cellulose hydrogel. The compressive strength of the composite hydrogels with 66.7% HNTs is 128 kPa, while that of pure cellulose hydrogel is only 29.8 kPa in compressive strength. Rheological measurement suggests the resistance to deformation is improved for composite hydrogels. X-ray diffraction and Fourier transform infrared spectroscopy show that the crystal structure and chemical structure of HNT are not changed in the composite hydrogels. Hydrogen bonding interactions between HNT and cellulose exist in the composites. A porous structure of the composite hydrogels with pore size of 200–400 μm was found by scanning electron microscopy. The addition of HNT leads to decreased swelling ratios in NaCl solution and pure water for the composite hydrogels. Cytotoxicity assays show that the cellulose/HNT composite hydrogels have a good biocompatibility with MC3T3-E1 cells and MCF-7 cells. Curcumin is further loaded into the composite hydrogel via physical adsorption. The curcumin-loaded composite hydrogels show a strong inhibition effect on the cancer cells. All the results illustrate that the cellulose/HNT composite hydrogels have promising applications such as anticancer drug delivery systems and anti-inflammatory wound dressings.  相似文献   

8.
The present work reveals a new and simple strategy, a one-step sol–gel procedure, to encapsulate a low water-soluble drug in silica mesostructured microparticles and to improve its release in physiological media. The synthesis of these new materials is based on the efficient solubilisation of a poorly water-soluble drug in surfactant micelles (Tween 80, a pharmaceutical excipient) which act as template for the silica network. A strict control of the sol–gel process and the parameters procedure in soft conditions (concentration, pH, temperature) was applied to reach the solubilisation limit of the drug in the micellar solution so as to optimise its encapsulation. Even if this one-pot procedure could appear limited by the low drug loading, it could provide an interesting alternative for the formulation of many recent highly active but very poorly soluble drugs.  相似文献   

9.
The preparation procedure of silica–titania composite oxide using novel solution/sol single precursor containing titanium peroxocomplex and silicic acid has been described. Pechini-type sol–gel process has been used to prepare oxides from the aqueous precursor. Some structural, morphological and textural characteristics of the prepared material have been presented. Composite SiO2/TiO2 has high surface area (c.a. 300 m2/g), and it is composed of anatase nanoparticles with the mean diameter of 5 nm embedded in amorphous silica, then TiO2 prepared via similar method is presented as a mixture of anatase and rutile phases. The proposed synthetic procedure meets the requirements of “green chemistry”.  相似文献   

10.
Titania (TiO2) and titania–silica (TiSi) aerogels are suitable for photocatalytic oxidation of volatile organic compounds for pollution mitigation; however, methods for fabricating these aerogels can be complex. In this work we describe the use of a rapid supercritical extraction (RSCE) technique to prepare TiO2 and TiSi aerogels in as little as 8 h. The RSCE technique uses a metal mold and a four-step hydraulic hot press procedure to bring the solvents in the sol–gel pores to a supercritical state and control the supercritical fluid release process. Resulting TiO2 aerogels were powdery with BET surface areas of 130–180 m2/g, pore volumes ~0.5 cm3/g and skeletal densities of 3.6 g/mL. Monolithic TiSi aerogels were made using two different methods. An impregnation process, in which titania precursor was added to a silica sol–gel, took 4–8 days to complete with a 7-h RSCE and resulted in translucent aerogels with high surface area (560–650 m2/g) and pore volume (2.0–2.6 cm3/g), bulk densities ranging from 0.1 to 0.4 g/mL and skeletal densities of 2.3 g/mL. A co-precursor method for preparing TiSi aerogels took 8 h to complete. The precursor chemical mixture was poured directly into the mold and processed in a 7-h RSCE process. The resulting aerogels were opaque, with high surface areas (510–580 m2/g), low bulk density (0.03 g/mL), skeletal densities of 2 g/mL and pore volumes of 2.6–3.5 cm3/g. Preliminary solar simulator studies show that TiO2 and TiSi aerogels are capable of photocatalytic degradation of methylene blue in aqueous solution.  相似文献   

11.
In present work, we have prepared gels with various compositions of methyltrimethoxysilane—3-(2,3-epoxypropoxy) propyltrimethoxysilane (MTMS-GPTMS) using a two-step acid base sol–gel process. To make a comparative study between the two common drying routes, we prepared gels under supercritical and also under ambient conditions. The density of the supercritically dried hybrid aerogels lies between 0.18 and 0.31 gcm?3, while the density of the ambient dried ones ranges between 0.35 and 0.42 gcm?3. The surface area of MTMS-0.25 GPTMS aerogel dried under supercritical conditions, has been found to be 464 m2 g?1 with a pore volume and average pore diameter of 1.24 cm3 g?1 and 11 nm respectively. The same composition dried under ambient conditions is found to have similar properties i.e. a BET surface area of 439 m2 g?1, pore volume of 1.22 cm3 g?1 and average pore diameter of 11 nm. The aerogels were later pyrolyzed yielding silica/carbon composite aerogels. The pyrolized aerogels possessed a surface area as high as 207 m2 g?1 with a total pore volume of 0.98 cm3 g?1. The pyrolysed aerogels were also calcined to yield carbon free materials.  相似文献   

12.
A convenient method for oxidative decarboxylation of α-amino acids is presented. The aldehyde products may be isolated or converted to tetrahydroisoquinolines by addition of dopamine via Pictet–Spengler reaction. Racemic products are generated by phosphate buffer >300 mM to maximize regioselectivity. (S)-Enantiomer products are generated by norcoclaurine synthase reaction in maleic acid buffer to minimize chemical background reaction.  相似文献   

13.
We have modified the inorganic silica network of aerogels with polydimethylsiloxane (PDMS), a hydroxyl-terminated polymer, to obtain an organic modified silicate (ORMOSIL). Reactions were assisted by high-power ultrasounds. The resulting gels were dried under supercritical conditions of the solvent to obtain a monolithic sono-aerogel. The mechanical behaviour of these aerogels can be tuned from brittle to rubbery as a function of the organic polymer content. In order to determine the links between the mechanical behaviour and modifications made to the microstructure, SANS (small-angle neutron scattering) experiments were carried out. To measure the intensities under “in situ” uniaxial compression of the aerogel, a specific sample-holder was built. Under uniaxial compression the 2D-diagrams were significantly anisotropic (butterfly pattern), indicating the rearrangement of the polymer. The form factor of these aerogels is described well by two correlation lengths, small microporous silica clusters surrounded by entangled polymer chains of 6 nm average size (blobs), which form a larger secondary level of agglomerates governed by the “frozen-in” elastic constraints.  相似文献   

14.
In this work the research results on the sol–gel synthesis and structure of silica nanocomposites, containing carrageenan and their application as carriers for cell immobilization were described. The samples were prepared at room temperature by replacing different quantity of the inorganic precursor with κ-carrageenan. For studying the structure of the synthesized hybrids the following methods were used: FT-IR, XRD, BET-Analysis, SEM, AFM and Roughness Analysis. The influence of the type of silicon precursors, nature and quantity of organic component on the structure, surface area, design and size of nanostructures was established. The possibility of application of the synthesized biocatalysts in an enzyme degradation process of the toxic, carcinogenic and mutagenic substances benzonitrile, fumaronitrile, o-, m-, and p-tolunitriles was investigated at batch experiments. A two-step biodegradation process in a column bioreactor of fumaronitrile was followed. After operation of the system for 8 h at a flow rate 45 mL h?1 and at 60 °C, the overall conversion was 89%, showing a good stability of the developed process.  相似文献   

15.
Nanosized platinum particles loaded on the TiO2 nanoparticles were prepared to assess its photocatalytic activity in simple one-pot synthesis of quinaldines from anilines in ethanol using UV light. The catalyst was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy, X-ray photoelectron spectra (XPS), Brunauer?CEmmer?CTeller surface area, atomic force microscope and diffuse reflectance spectra. XRD patterns revealed that the crystal structure of Pt?CTiO2 resembled anatase phase of TiO2. The UV?CVis spectra indicated an increase in absorption of visible light when compared to TiO2. XPS analysis reveals that platinum particles are present mainly in metallic form. Furthermore, TEM analysis showed non-spherical-shaped Pt?CTiO2 nanoparticles of the diameter 10?C30?nm. Upon irradiation in the presence of Pt?CTiO2, aniline and oxidation products derived from ethanol undergo condensation?Ccyclization to afford quinaldines. Higher efficiency of Pt?CTiO2 than Au?CTiO2 in the conversion of aniline to quinaldines is due to the higher work function of Pt.  相似文献   

16.
《Tetrahedron letters》1998,39(45):8229-8232
Condensation of α-phthaloylaminoacetophenones 1a-c with N,N-dimethylformamide dimethyl acetal afforded the novel enamines 3a-c. Cyclization of 3 with hydrazine, alkylhydrazine or phenylhydrazine salts (4a-d) gave 4-phthaloylamino-3-arylpyrazoles 7–9 in high yields. Deprotection of 7–9 was accomplished with hydrazine to provide 4-amino-3-arylpyrazoles 5 in good yields.  相似文献   

17.
The simpler non-supercritical drying approach has been used for the first time for the preparation of silica–silica composite aerogels (CA) and the efficiency of the process being demonstrated by testing the use of the aerogels for simulated high level nuclear waste confinement. Compositions of 5, 10, 20, 30, 40 and 50 wt% of silica (aerosil® 380) in silica–aerogel were prepared by introducing pyrogenic silica in to silica sol derived by hydrolysis of Tetraethoxy silane (TEOS). The silica–silica composite aerogels (CA) possessed very high surface area and low bulk densities. The effectiveness of the prepared composite aerogels as precursor for high level nuclear waste immobilized glass is also presented. Neodymium nitrate dissolved in isopropanol is used to simulate +3 valent actinides. The stability of neodymium in the glass matrix has been found to be extremely high. Transmission electron microscopy (TEM) has been used to characterise the aerogels as well as neodymium incorporated sintered gels. X-ray diffraction (XRD) studies of the sintered samples reveal the formation of neodymium silicates.  相似文献   

18.
We have developed a facile and efficient method for the synthesis of functionalized novel furylquinolines. A variety of quinoline–furan conjugates were obtained via the condensation of 2-chloroquinoline-3-carbaldehyde with acetylenecarboxylates and isocyanides in good to excellent yields.  相似文献   

19.
A highly selective and efficient cyclocondensation reaction for construction of various 3-substituted-2H-pyrido[1,2-a]pyrimidin-2-ones and related fused pyrimidones from allylic carbonates and 2-heteroaryl amines has been developed. The transformation involves one-pot sequential aza-Michael addition, intramolecular acyl substitution, and [1,3]-H shift. The method is catalyst free, eco-friendly, scalable, and completes within a short reaction time, with no work-up, no column purification, and demonstrate a broad functional group tolerance.  相似文献   

20.
Silica films were grown on polyimide substrate using surface sol–gel reaction, and the film growth process was characterized by ellipsometry, atomic force microscopy, and X-ray photoelectron spectroscopy. On the activated polyimide surface, silica film was grown by sequential immersion in SiCl4 solution and H2O. The thickness of silica films is linear with the depositing cycle, about 5.0 nm per cycle. The silica films present an island-like growth type and are not a strict equilibrium SiO2 structure. Moreover, the result of the tensile test suggests that the silica films have a good adhesion to the polyimide substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号