首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various copper‐based catalyst systems and reaction conditions were studied in the graft copolymerization of N,N‐dimethylacrylamide (DMAam) with a cellulose‐based macroinitiator by controlled radical polymerization. The cellulose macroinitiator with degree of substitution DS = 0.44 was synthesized from dissolving softwood pulp in a LiCl/DMAc solution. The graft copolymerizations of DMAam, using the cellulose macroinitiator and various copper‐based catalyst systems, were then carried out in DMSO solutions. The copolymerization kinetics was followed by 1H NMR. Water‐soluble cellulose‐g‐PDMAam copolymers were comprehensively characterized by ATR‐FTIR and 1H NMR spectroscopies and SEC analyses. DLS and steady‐shear viscosity measurements revealed that when the DPgraft of the cellulose‐g‐PDMAam copolymer is high enough, the copolymer forms a more compact structure in water. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
A microphase‐separated, amphiphilic graft copolymer consisting of a poly (vinyl chloride) (PVC) backbone and poly(oxyethylene methacrylate) (POEM) side chains, (PVC‐g‐POEM at 62:38 wt %) was synthesized via atom transfer radical polymerization (ATRP). Nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM) clearly revealed that the “grafting from” method using ATRP was successful and that the graft copolymer molecularly self‐assembled into discrete nanophase domains of continuous PVC and isolated POEM regions. The self‐assembled graft copolymer film was used to template the growth of silver nanoparticles in solid state by introducing a AgCF3SO3 precursor and a UV irradiation process. The in situ formation of silver nanoparticles in the graft copolymer template film was confirmed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering. FTIR spectroscopy and X‐ray photoelectron spectroscopy also demonstrated the selective incorporation and in situ formation of silver nanoparticles within the hydrophilic POEM domains, presumably due to strong interactions between the silver and the ether oxygen in POEM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3911–3918, 2008  相似文献   

3.
Silver nanoparticles were prepared by UV irradiation from silver salts, such as AgBF4 or AgNO3, when dissolved in an amphiphilic film of poly((oxyethylene)9 methacrylate)‐graft‐poly((dimethyl siloxane)n methacrylate), POEM‐g‐mPDMS. The in situ formation of silver nanoparticles in the graft copolymer film was confirmed by transmission electron microscopy (TEM), UV‐visible spectroscopy, and wide angle X‐ray scattering (WAXS). The results demonstrated that the use of AgBF4 yielded silver nanoparticles with a smaller size (~5 nm) and narrower particle distribution when compared with AgNO3. The formation of silver nanoparticles was explained in terms of the interaction strength of the silver ions with the ether oxygens of POEM, as revealed by differential scanning calorimetry (DSC) and X‐ray photoelectron spectroscopy (XPS). It was thus concluded that a stronger interaction of silver ions with the ether oxygens results in a more stable formation of silver nanoparticles, which produces uniform and small‐sized nanoparticles. DSC and small angle X‐ray scattering (SAXS) data also showed the selective incorporation and in situ reduction of the silver ions within the hydrophilic POEM domains. Excellent mechanical properties of the nanocomposite films (3–5 × 105 dyn/cm2) were observed, mostly because of the confinement of silver nanoparticles in the POEM chains as well as interfaces created by the microphase separation of the graft copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1283–1290, 2007  相似文献   

4.
There is increased attention paid to metallic nanoparticles due to their intensive use in various branches of agriculture and biotechnology, such as pest management, nanosensors, gene delivery, seed treatment, etc. There has been growing interest in applying environmentally friendly strategies for synthesizing nanoparticles without using substances which are hazardous to the environment. Biological practices for the synthesis of nanoparticles have been considered as possible ecofriendly alternatives to chemical synthesis. In the present study, we used biogenic silver and copper nanoparticles which were prepared by a previously reported green method. Moreover, the problem of chemical residues, which usually remain along with chemically synthesized nanoparticles and limit their application, was solved by developing such a green synthesis approach. To study the antibacterial activity of silver and copper nanoparticles, Pseudomonas aeruginosa was used; for the evaluation of antifungal activity, the pathogenic fungi Botrytis cinerea, Pilidium concavum and Pestalotia sp. were applied. To the best of our knowledge, this study represents the first time that the antifungal impact of a nanoparticle has been tested on Pilidium concavum and Pestalotia sp. Silver nanoparticles were found to be the more effective antimicrobial agent against all examined pathogens in comparison to copper nanoparticles. Data from such investigations provide valuable preliminary data on silver nanoparticle-based compounds or composites for use in the management of different pathogens.  相似文献   

5.
Hydrophobically modified polyacrylamide (PAAm) was prepared by grafting PAAm with block copolymer of poly(ethylene oxide) and poly(propylene oxide), PEO‐PPO‐PEO, by melt method in the presence of benzoyl peroxide as initiator. The chemical structure of the graft copolymer was determined by FTIR and 1HNMR analyses. The surface tension, critical micelle concentration, and surface activities were determined at different temperatures. Surface parameters such as surface excess concentration (Γmax), the area per molecule at interface (Amin), and the effectiveness of surface tension reduction (ΠCMC) were determined at different temperatures from the adsorption isotherms of the prepared surfactants. The prepared surfactant was tested as emulsifier for water with xylene, cyclohexane, or petroleum crude oil synthetic emulsions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

The photoinduced graft copolymerization of methyl methacrylate onto cellulose was studied using N-bromosuccinimide as the photoinitiator. The formation of graft copolymer increases with an increasing amount of cellulose. The graft copolymerization increases with increasing initiator concentration up to 1,25 × 10?2 M and thereafter it decreases. The percentage of graft increases with increasing monomer concentration up to 46.9 × 10?2 M and thereafter it decreases. The percentage graft-on increases with increasing temperature. The overall activation energy was computed to be 8.40 kcal/mol. The percentage graft was investigated using different water-miscible organic solvents. The graft copolymerization was also investigated using differently modified cellulose. A possible mechanism for the photo-graft copolymerization onto cellulose is suggested.  相似文献   

7.
Silver nanoparticles were synthesized by the reduction of the silver nitrate (AgNO3) using the latex copolymer in ethanol solution under microwave (MW) heating. The reaction parameters such as silver precursor concentration (from 0.005 to 0.1 g/l) and MW power (200–800 W) significantly affect the formation rate, shape, size and distribution of the silver nanoparticles. A significant reduction of irradiation time was observed when the MW energy is compared to conventional thermal reduction processes. The prepared silver nanoparticles show uniform and stable sizes from 5 to 11 nm, which can be stored at room temperature for approximately 12 months without any visible change. These peculiarities indicate that the latex copolymer is a good stabilizer for the silver nanoparticles. The optical properties, morphology, and crystalline structure of the silver-latex copolymer nanocomposites were characterized by the Ultraviolet–Visible spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The study of the TEM images at high magnifications identified the silver nanoparticles as face-centered cubic (fcc) structure with spherical and hexagonal shapes.  相似文献   

8.
Acrylamide‐vinyl alcohol (AAm/VA) graft copolymer was prepared and characterized. The interaction of the graft copolymer with poly‐(methacrylic acid) (PMAA) in water was studied by several experimental techniques, such as viscometry, potentiometry, conductometry, IR spectra, and transmittance measurements. PMAA was found to interact with the graft copolymer in two distinct steps. The relative complexation ability of PAAm and PVA with respect to PMAA does not change when these polymers are present as parts of a graft copolymer chain.  相似文献   

9.
Electrospun cellulose nanofibers and cellulose-graft-polyacrylonitrile (Cell-g-PAN) copolymer nanofibers containing silver nanoparticles (AgNPs) were synthesized for effective water disinfection. Surface morphology, AgNPs content, physical distribution of AgNPs, levels of silver leaching from the fibers in water and antimicrobial efficacy were studied. Scanning electron microscope images revealed that AgNPs in cellulose nanofibers were more evenly dispersed than in Cell-g-PAN copolymer nanofibers, but with the certainty that Cell-g-PAN copolymer nanofibers had higher AgNPs content. This was confirmed by energy dispersive X-ray analysis and atomic absorption analysis. Both cellulose nanofibers and Cell-g-PAN copolymer nanofibers containing AgNPs had excellent antimicrobial activity against Escherichia coli, Salmonella typhi, and Staphylococcus aureus, with cellulose-nAg nanofibers killing between 91 and 99 % of bacteria in a contaminated water sample and Cell-g-PAN-nAg copolymer nanofibers killed 100 %. Neither Cell-g-PAN copolymer nanofibers nor cellulose nanofibers leached silver into water.  相似文献   

10.
Solid poly(acrylamide) (PAAm) composite membranes containing silver ions have been investigated for olefin/paraffin separation. The propylene permeance increased significantly for a solid PAAm/AgBF4 composite membrane with increasing loading amount of silver ions. Silver ions in solid PAAm form reversible complexes with propylene, resulting in the facilitated transport of propylene. The propylene selectivity of 100 over propane was obtained when the mole ratio of silver ions to acrylamide unit was 1. This high separation performance would be obtained predominantly because of the high loading of the propylene carrier, silver ions. PAAm-graft/AgBF4 composite membranes were prepared in order to improve the gas permeance. Introduction of PAAm grafts on a polysulfone microporous membrane surface was confirmed by FT-IR spectroscopy. The propylene permeance was increased through the PAAm-graft/AgBF4 membranes compared to that through of the PAAm/AgBF4 composite membranes, indicating the formation of ultra-thin top layer.  相似文献   

11.
A modified starch tannage was synthesized by free radical graft copolymerization of degraded starch with p‐hydroxybenzoic acid (pHA) using horseradish peroxidase/H2O2 as the initiator. In this study, the effects of the degree of degradation of the starch, dosage of pHA, polymerization temperature, system pH, and horseradish peroxidase content on the tanning properties of the graft copolymer were investigated. The shrinkage temperature of leather tanned by the graft copolymer was 78 °C. The thickness increment ratio of the retanned leather was 21.6%, and meanwhile the retanned leather showed better softness. The results indicate that the graft copolymer has excellent tanning and retanning properties. The structure of the graft copolymer was analyzed by Fourier Transform Infrared Spectroscopy (FTIR), 1Hydrogen‐Nuclear Magnetic Resonance (1H‐NMR), and 13Carbon‐Nuclear Magnetic Resonance (13 C‐NMR) and Gel Permeation Chromatography (GPC). Compared with conventional methods, we show that a “green” leather tannage could be achieved using a radical graft copolymerization of starch and phenols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, silver nanoparticles (Ag NPs) prepared through in situ green and facile synthesis by using nanofibrillated cellulose (NFC) hydrogel as support, stabilizer and reducing agent by two different methods. Their catalytic abilities were examined for conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The structure of as-synthesized composites with different AgNO3 concentrations were characterized by ultraviolet–visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy; energy dispersive spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Results show that all nanocomposites demonstrated excellent catalytic activity. Among them, Ag@NFC-2 sample, with spherical and well-dispersed Ag NPs along the nanofiber, produced by the second method having 0.25 M AgNO3 concentration presented outstanding catalytic efficiency.  相似文献   

13.
Gamma-ray induced gaseous phase in situ polymerization of vinyl chloride and copolymerization of vinyl chloride with vinyl acetate in bagasse have been investigated and discussed. The prepared bagasse-plastic combinations were not improved of its mechanical strength owing to the deposited PVC powder and the low copolymer loading in bagasse-board. The viscosity average molecular weight of PVC formed in bagasse-board was found to be slightly higher than that of PVC formed in the in situ liquid polymerization system. No graft reaction of PVC onto bagasse cellulose was observed, while low grade of graft reaction was confirmed with PVC-PVAc copolymer system.  相似文献   

14.
The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The present study reports the synthesis of silver (Ag) nanoparticles from silver precursor using the bark extract and powder of novel Cinnamon zeylanicum. Water-soluble organics present in the plant materials were mainly responsible for the reduction of silver ions to nano-sized Ag particles. TEM and XRD results confirmed the presence of nano-crystalline Ag particles. The pH played a major role in size control of the particles. Bark extract produced more Ag nanoparticles than the powder did, which was attributed to the large availability of the reducing agents in the extract. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The EC50 value of the synthesized nanoparticles against Escherichia coli BL-21 strain was 11 ± 1.72 mg/L. ThusC. zeylanicum bark extract and powder are a good bio-resource/biomaterial for the synthesis of Ag nanoparticles with antimicrobial activity.  相似文献   

15.
Formation of silver nanoparticles has been developed based on a template technique. Amphiphilic star-block copolymers employed as single molecule template, utilizing the coordination of Ag+ ions with carboxyl groups in the core of the star-block copolymer. Silver nanoparticles have been prepared by the addition of chemical reductant, e.g., NaBH4. The solution of the resultant nanosphere composites showed yellow due to the surface plasmon resonance. These composites were soluble in organic solvents, because hydrophobic corona of the star-block copolymer protected the fabricated silver nanoparticles from aggregation.  相似文献   

16.
Nanocomposite cellulose films with obvious magnetic anisotropy have been prepared by in situ synthesis of plate-like Fe2O3 nanoparticles in the cellulose matrix. The influence of the concentrations of FeCl2 and FeCl3 solutions on the morphology and particle size of the synthesized Fe2O3 nanoparticles as well as on the properties of the composite films has been investigated. The Fe2O3 nanoparticles synthesized in the cellulose matrix was γ-Fe2O3, and its morphology was plate-like with size about 48 nm and thickness about 9 nm, which was totally different from those reported works. The concentration of FeCl2 and FeCl3 solution has little influence on the particle size and morphology of the Fe2O3 nanoparticles, while the content of Fe2O3 nanoparticles increased with the increase of the concentration of the precursor solution, indicating that porous structured cellulose matrix could modulate the growth of inorganic nanoparticles. The unique morphology of the Fe2O3 nanoparticles endowed the composite films with obvious magnetic anisotropy, which would expand the applications of the cellulose based nanomaterials.  相似文献   

17.
The first colloidal nanoparticle synthesis of the copper selenophosphate Cu3PSe4, a promising new material for photovoltaics, is reported. Because the formation of binary copper selenide impurities seemed to form more readily, two approaches were developed to install phosphorus bonds directly: 1) the synthesis of molecular P4Se3 and subsequent reaction with a copper precursor, (P‐Se)+Cu, and 2) the synthesis of copper phosphide, Cu3P, nanoparticles and subsequent reaction with a selenium precursor, (Cu‐P)+Se. The isolation and purification of Cu3P nanoparticles and subsequent selenization yielded phase‐pure Cu3PSe4. Solvent effects and Se precursor reactivities were elucidated and were key to understanding the final reaction conditions.  相似文献   

18.
19.
The present study concerns the electrochemical synthesis of basic copper carbonate nanoparticles by oxidation of metallic copper on the anode in an aqueous bicarbonate solution. This simple and one-step preparation can be considered as green synthesis. The scanning electron microscopy (SEM) analysis indicates that average particle size of the product is in the range of about 70 nm. On the other hand, basic copper carbonate micro-powder has been prepared, by mixing solutions of copper(II) sulphate and sodiu bicarbonate. The SEM analysis showed that the size of particles prepared in the same way is in the range of about 1 μm. In another part of this study, the thermal decomposition of micro and nanoparticles of copper carbonate produced by various methods was studied in air using TG-DTA techniques. The results of thermal study show that the decomposition of both samples occurs in single step. Also, the TG-DTA analysis of the nanoparticles indicates that the main thermal degradation occurs in the temperature range of 245–315°C. However, microparticles of Cu(OH)2 · CuCO3 decomposed endothermally in the temperature range of 230–330°C.   相似文献   

20.
In this study, poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐graft‐poly(oxyethylene methacrylate), P(VDF‐co‐CTFE)‐g‐POEM, an amphiphilic comb copolymer with hydrophobic P(VDF‐co‐CTFE) backbone and hydrophilic POEM side chains at 73:27 wt % was synthesized. The POEM side chains were grafted from the P(VDF‐co‐CTFE) mainchain backbone via atom transfer radical polymerization (ATRP) using direct initiation of the chlorine atoms in CTFE units. Synthesis of microphase‐separated P(VDF‐co‐CTFE)‐g‐POEM comb copolymer was successful, as confirmed by nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM). Nanocomposite films were prepared using the comb copolymer as a template film and the in situ reduction of AgCF3SO3 precursor to silver nanoparticles under UV irradiation. Silver nanoparticles with 4–8 nm in average size were in situ created in the solid state template film, as revealed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering (WAXS). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) presented the selective incorporation and the in situ growth of silver nanoparticles within the hydrophilic POEM domains of microphase‐separated comb copolymer film. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 702–709, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号