首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this study, silver nanoparticles (Ag-NPs) have been synthesized using extract of Chelidonium majus root in aqueous solution at room temperature. The root extract was able to reduce Ag+ to Ag0 and stabilized the nanoparticles Different physico-chemical techniques including UV–Vis spectroscopy, transmission electron microscopy and powder X-ray diffraction (PXRD) were used for the characterization of the biosynthesized Ag-NPs obtained. The surface plasmon resonance band appeared at 431 nm is an evidence for formation of Ag-NPs. TEM imaging revealed that the synthesized Ag-NPs have an average diameter of around 15 nm and with spherical shape. Moreover the crystalline structure of synthesized nanoparticles was confirmed using XRD pattern. Furthermore antimicrobial activities of synthesized Ag-NPs were evaluated against Escherichia coli -ATCC 25922 and Pseudomonas aeruginosa ATCC 2785 bacteria strain.  相似文献   

2.
In this study, a biologically active fibrous material was designed by immobilizing trypsin on viscose fibers. The viscose yarn was first oxidized with sodium periodate to produce aldehyde groups and then employed as a support for subsequent immobilization of trypsin through bovine serum albumin. The oxidation by sodium periodate caused changes in the chemical and physical properties of the modified yarn samples, which were evaluated by determining the aldehyde group content, fineness and tensile strength of yarn. The viscose fibers oxidized under the most severe conditions (0.4 % NaIO4, 360 min) exhibited the maximum amount of introduced aldehyde groups (1.284 mmol/g), but also the highest decrease in tensile strength. The trypsin activity was assayed with N-α-benzoyl-DL-arginine p-nitroanilide hydrochloride, whereas the amount of bound trypsin was determined by Bradford method. Trypsin immobilized on oxidized viscose yarn retained 97.3 and 83.8 % of the initial activity over 60 days of storage at 4 and 25 °C, respectively, and remained firmly attached to the carrier. The potential application of obtained bioactive fibers is in the treatment of wounds.  相似文献   

3.
In order to improve the antimicrobial activity of bacterial cellulose (BC), the silver nanoparticles (Ag NPs) were in situ fabricated on the BC membranes, affording BC and Ag hybrid antimicrobial materials, BC + Ag, which possesses excellent antimicrobial performance. Typically, carboxyl groups were firstly introduced into BC by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation. Then, the carboxyl-functionalized BC was performed with ion-exchange reaction to change the sodium ions into Ag+ by immersing in AgNO3 aqueous solution, generating Ag+ anchored BC. Finally, two types of distinct reductive reagents including NaBH4 and sodium citrate were employed to transform Ag+ into Ag NPs to fabricate BC + Ag. The diameters of Ag NPs were determined to be 3.8 nm for NaBH4-reduced BC + Ag, and 22.0 nm for sodium citrate-reduced one, respectively. The silver content of BC + Ag were determined to be 1.944 and 2.895 wt% for NaBH4-reduced sample and sodium citrate-reduced one, respectively. Two types of BC + Ag both showed a slow and persistent Ag+ release profile, but the NaBH4-reduced one released much more Ag+ than that of sodium citrate under the same measurement condition. In-depth antibacterial analysis via the disc diffusion and colony forming count method disclosed that BC + Ag exhibited strong bactericidal effects against both Escherichia coli and Staphylococcus aureus. And the antibacterial activity of NaBH4-reduced BC + Ag was higher than the sodium citrate-reduced one. Overall, this study would further improve the antibacterial efficiency of BC + Ag.  相似文献   

4.
Biosynthesis of noble metal nanoparticles is a vast developing area of research. In the present study, silver nanoparticles (Ag-NPs) were synthesized from aqueous silver nitrate through a simple and biosynthetic route using water extract of Curcuma longa (C. longa) tuber powder, which acted simultaneousl as a reductant and stabilizery. The as-prepared samples are characterized using UV–Visible, XRD, TEM, SEM, EDXF, and FT-IR techniques. The formation of Ag-NPs is evidenced by the appearance of the signatory brown color of the solution and UV–vis spectra. Formation of Ag/C. longa was determined by UV–Vis spectroscopy where surface plasmon absorption maxima can be observed at 457–415 nm from the UV–Vis spectrum. The XRD analysis shows that the Ag-NPs are of a face-centered cubic structure. Well-dispersed Ag-NPs with anisotropic and isotropic morphology for 5, 10, and 20 mL of C. longa water extract having a size less than 10 nm are seen in TEM images. The optimum volume extraction to synthesize smallest particle size was 20 mL with mean diameter and standard division 4.90 ± 1.42 nm. FT-IR spectrum indicates the presence of different functional groups in capping the nanoparticles with C. longa. The zeta potential analysis results indicated that the charge of C. longa was negative and increased in Ag/C. longa emulsion with increasing of volumes of extract used (10–20 mL). The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries.  相似文献   

5.
Silver nanoparticles (Ag NPs) were prepared by a green synthesis process, using Trichodesma indicum (T. indicum) leaf extract at different (5, 10 and 15 mL) concentrations. The formation of Ag NPs was confirmed by UV–Vis spectrophotometry with surface plasmon resonance at 443 nm. After this confirmation, the influence of leaf extract concentrations on the structural and surface morphological properties was studied. Along with their physical properties, antibacterial activity against pathogenic (B. cereus and E. coli) bacteria and photocatalytic de-colorization of methylene blue (MB) were examined. The XRD studies revealed that all the nanoparticles exhibited preferential orientation along the (111) plane of silver. The crystallite size decreases as the extract concentration is increased. From SEM images, it was found that the particles are spherical in shape and the size of the particles decreased drastically when the leaf extracts concentration is greater than 10 mL. The images strongly support the result observed from the SEM studies. FT-IR analysis showed that the plant compounds are involved in the reduction of Ag+ ions to Ag0. Ag NPs synthesized in 15 mL of leaf extract greatly resist the growth of both species and decomposed 82% of MB within 210 min. This ability of Ag NPs can be due to the small spherical-shaped particles and larger Ag+ ion release.  相似文献   

6.
A green approach for forming silver nanoparticles (Ag NPs) on ecofriendly highly absorbent nonwoven fabrics was investigated. The fiber blending ratio of highly absorbent nonwoven fabrics was optimized by simulated body fluid (SBF) and water absorption. SBF and water absorption ratios reached 42 and 42.9 times after addition of 50 wt% highly absorbent fibers. The Ag NPs were characterized by UV-visible spectrometry (UV-Vis), X-ray diffraction (XRD) and transmission electron microscopy (TEM). UV-Vis and XRD images confirmed the presence of Ag NPs. TEM observation revealed that Ag NPs were distributed at 5–10 nm. The results of antimicrobial activity showed that Ag NP dope is effective for producing antimicrobial nonwoven fabrics against E. coli and S. aureus.  相似文献   

7.
In this study, biodegradable poly(butylenes succinate) (PBS) fiber mats containing silver nanoparticles (AgNPs) were prepared by the electrospinning process. Small AgNPs (<10 nm) were simply synthesized using polyvinylpyrrolidone as the capping agent as well as the reductant. The morphology of the PBS-AgNPs fiber mats and the distribution of the AgNPs were well characterized by TEM and SEM. The release of Ag from the PBS fiber mats was quantitively determined by ICP. The PBS fiber mats with 0.29 % AgNPs content showed strong antimicrobial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli with the efficacy as high as 99 %. The effective bactericidal activity on E. coli was demonstrated for a short contacting time with the PBS-AgNPs fiber mats. In addition, the long-term release performance of Ag from the fiber mats can keep inhibiting the bacterial growth in the mats over a long period of time.  相似文献   

8.
In the present study, tailor-made ethylene vinyl alcohol copolymer (EVOH) fibers containing different amounts of antimicrobial silver ions and nanoparticles were developed by electrospinning and subsequent thermal annealing. The morphology of the fibers was examined by scanning and transmission electron microscopy and thermal properties were characterized by differential scanning calorimetry. Speciation and controlled release of silver from the fibers was monitored by anodic stripping voltammetry and energy dispersive X-ray spectroscopy. Before aging, 100 % of the silver recovered from the electrospun structures was in ionic form to be instantly released in contact with moisture with varying temperature-dependent kinetics. Thermal annealing of the fibers at 100 °C for 1, 2, and 4 days prompted the gradual transformation of 70, 93–94, and 98–99 % of the total silver into nanoparticles homogeneously distributed along the fibers, which were mostly retained within them, producing a substantial decrease in their release capacity. Speciation and release profiles from the fibers were correlated with their antibacterial performance against Listeria monocytogenes and Salmonella enteric. This study is a step forward in the understanding of silver-based electrospun antimicrobial polymers and puts forth the suitability of EVOH for the development of targeted delivery systems in a number of applications.  相似文献   

9.
Green biosynthesis of nanoparticles and their applications in sensor field is of great interest to the researchers. We report herein a simple green approach for the synthesis of silver nanoparticles (Ag-NPs) using Acacia nilotica Willd twig bark and its application for the detection of 4-nitro phenol (4-NP). The synthesized Ag-NPs were characterized by Transmission electron microscopy, X-ray diffraction and elemental analysis. The size of synthesized Ag-NPs was in the range of 10–50 nm. The Ag-NPs modified electrode shows a high sensitivity and selectivity towards the sensing of 4-NP. The fabricated modified electrode shows a low detection limit of 15 nM on the wider linear response range from 100 nM to 350 μM with the sensitivity of 2.58?±?0.05 μAμM?1 cm?2. In addition, the fabricated sensor shows good repeatability and reproducibility.
Figure
The schematic representation of the fabrication of Ag-NPs and application of 4-nitrophenol sensing  相似文献   

10.
The objective of the present study was to evaluate efficiency of silver nanoparticles (Ag-NPs) biosynthesis using Descurainia sophia as a novel biological resource. The resulting synthesized Ag-NPs were characterized using UV visible spectroscopy, X-ray diffraction, transmission electron microscopy and dynamic light scattering (DLS). The UV–Vis spectra gave surface plasmon resonance at ~420 nm. TEM images revealed formation spherical shaped Ag-NPs with size ranged from to 1–35 nm. DLS confirmed uniformity of the synthesized Ag-NPs with an average size of ~30 nm. Following, the antibacterial and antifungal activities of the synthesized Ag-NPs were investigated. The concentration 25 µg/ml of the Ag-NPs showed maximum inhibitory effect on mycelium growth of Rhizoctonia solani (More than 86 % inhibition), followed by 15 µg/ml (55 % inhibition) and 10 µg/ml (63 % inhibition). The minimum inhibitory concentration and minimum bactericidal concentration of Ag-NPs against Agrobacterium tumefaciens (strain GV3850) and A, rhizogenes (strain 15843) were 4 and 8 µg/ml, respectively. The Ag-NPs were stable in vitro for 3 months without any precipitation or decrease of antifungal effects. Finally, it could be concluded that D. sophia can be used as an effective method for biosynthesis of nanoparticles, especially Ag-NPs.  相似文献   

11.
The effects of heavy metal ions (Co2+, Ag+, Cd2+) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.  相似文献   

12.
Antibacterial-modified cellulose fiber was prepared by covalently bonding β-cyclodextrin (β-CD) with cellulose fiber via citric acid (CA) as crosslinking agent, followed by the inclusion of ciprofloxacin hydrochloride (CipHCl) as antibiotic. Effects of reaction time, temperature, concentration of β-cyclodextrin citrate (CA-β-CD) and pH on the grafting reaction were investigated, and the grafting ratio of β-CD onto cellulose fibers was 9.7 % at optimal conditions; the loading and releasing behaviors of CipHCl into/from β-CD grafted cellulose fibers were also revealed, the load amount of CipHCl into grafted cellulose fibers increased remarkably, and the release of CipHCl from the grafted cellulose fibers was prolonged. The microstructure, phase and thermal stability of modified cellulose fibers were characterized by FT-IR, 13C CPMAS NMR, X-ray diffraction and TGA. Considerably longer bacterial activity against E. coli and S. aureus was observed for grafted fibers loading CipHCl compared to virgin ones. Optical and mechanical properties of the paper sheets decreased generally with more antibacterial-modified fibers added.  相似文献   

13.
Surface coating of metal nanoparticles is one of the major aspects to be optimized in the design of antimicrobial nanoparticles. The novelty of this work is that antimicrobial derivatives have been used as stabilizers to protect silver nanoparticles (Ag NPs). Microbicidal activity studies of fabricated cotton textiles coated with these Ag@Antibio were performed. Protective ligand layers of Ag NPs resulted to be a deterministic factor in their antimicrobial activity. The best bactericidal activity was obtained for Fabric TAM (coated with Ag NPs with triarylmethane derivates in surface, Ag@TAMSH), with a bacterial decrease of 3 log units for the S. aureus strain. Intrinsic antibiotic activity and partial positive charge of the TAMSH probably enhanced their antimicrobial effects. Fabric Eu (coated with Ag NPs with eugenol derivates in surface, Ag@EugenolSH) and Fabric FQPEG (coated with Ag NPs embedded in PEG-fluoroquinolone derivatives in surface, Ag@FQPEG) displayed antibacterial activity for both Staphylococcus aureus and Pseudomonas aeruginosa strains. These coated antimicrobial cotton fabrics can be applied in different medical textiles.  相似文献   

14.
A benzimidazolydine-based novel ligand L2 was prepared from 1,2-bis(benzimidazol-1-yl)ethane (L1) and synthesis of metallocycle complexes such as Ag(I)–N-Heterocyclic Carbene abbreviated as Ag–NHC and Cu(I)–N-Heterocyclic Carbene complex as Cu–NHC were synthesized and then estimated for antimicrobial and antioxidant properties. Synthesis of Ag–NHC and Cu–NHC metallocycle complexes was described. The benzimidazolydine ligand precursor and its Ag–NHC and Cu–NHC were successfully characterized by FT-IR, FT-Raman, 1D and 2D NMR, HR-ESI mass spectra, and cyclic voltammetric studies. In the present work, antimicrobial study discloses that ligand (L1 and L2) do not show inhibitory activity against various pathogens; however, it was gradually increased, when they were coordinated to metals like Ag and Cu. Among the four compounds, the Ag–NHC strongly hampers the growth of fungal strains. The minimal inhibitory concentration (MIC) ranged between 46 and 750 μg mL?1. A distinctive cell growth reduction was observed in C. albicans when treated with minimum concentration of Ag–NHC complex. Ag–NHC exhibited the ability to prevent the growth of C. albicans by causing severe membrane damage and accumulation of intracellular reactive oxygen species (ROS), which were revealed by fluorescence spectroscopic studies. The tested (L1, L2, Ag–NHC and Cu–NHC) compounds demonstrated significant activity with IC50 values range (0.20–30 μM) for DPPH, OH and NO antioxidant activity. Ascorbic acid was used as standard drug. The radical scavenging potencies of the compounds were explored by employing DPPH, OH and NO assays, in which Ag–NHC exhibited highest inhibitory effect on the radicals [IC50?=?57.3 μM (DPPH), 57.7 μM (OH), 52.3 μM (NO)].  相似文献   

15.
The present study involved development of a novel sodium alginate (SA)/HPMC/light liquid paraffin emulsified (o/w) gel beads containing Diclofenac sodium (DS) as an active pharmaceutical ingredient and its site specific delivery by using hard gelatin capsule fabricated by enteric coated Eudragit L-100 polymer. Emulsified gel beads were formulated by 3-level factorial design, ionic gelatin method. The obtained beads were characterized by Fourier transform infrared, X-ray diffraction and Field emission scanning electron microscope analysis. The variables such as SA (X1), HPMC (X2), were optimized for drug loading and in vitro drug release with the help of response surface methodology (RSM). The RSM analysis predicted that SA was significant for both drug loading (p = 0.0005) and drug release (p = 0.0041). HPMC was only significant for drug release (p = 0.0154). The cross-product contribution (2FI) and quadratic model were found to be adequate and statistically accurate with correlation value (R2) of 0.9054 and 0.9450 to predict the drug loading and drug release respectively. An increase in concentration of HPMC and SA decreases the drug loading as well as the drug release. The obtained optimum values of drug loading and DS released were 7.43 % and 85.54 % respectively, which were well in agreement with the predicted value by RSM.  相似文献   

16.
The concentration of ethanol produced from lignocellulosic biomass should be at least 40 g l?1 [about 5 % (v/v)] to minimize the cost of distillation process. In this study, the conditions for the simultaneous saccharification and fermentation (SSF) at fed-batch mode for the production of ethanol from alkali-pretreated empty palm fruit bunch fibers (EFB) were investigated. Optimal conditions for the production of ethanol were identified as temperature, 30 °C; enzyme loading, 15 filter paper unit g?1 biomass; and yeast (Saccharomyces cerevisiae) loading, 5 g l?1 of dry cell weight. Under these conditions, an economical ethanol concentration was achieved within 17 h, which further increased up to 62.5 g l?1 after 95 h with 70.6 % of the theoretical yield. To our knowledge, this is the first report to evaluate the economic ethanol production from alkali-pretreated EFB in fed-batch SSF using S. cerevisiae.  相似文献   

17.
The purpose of this study was to prepare and characterize a controlled release system based on porous silica loaded with chlorhexidine (Cx) and its inclusion compounds in β-cyclodextrin (βcd), and to evaluate its antimicrobial activity. Acetate chlorhexidine (CxA), gluconate chlorhexidine (CxG), βcd:chlorhexidine acetate 2:1 (βcd:CxA) and βcd:chlorhexidine gluconate 2:1 (βcd:CxG) were incorporated into porous silica. Drug loading was characterized by FTIR, powder X-ray diffraction, thermal analysis and BET, and was shown to be in an amorphous state and porous matrix. The kinetics release parameter of the drug was established, which showed that the Cx systems release profile followed zero order release until 400 h and Higuchi model release until 750 h, after the burst effect at the first 8 h. Chlorhexidine therapeutic range was reached near first hour for all systems. The chlorhexidine porous silica system was biologically active against Enterococcus faecalis and Candida albicans in vitro. The systems showed an efficient Cx controlled release modulated by the presence of the β-cyclodextrin and by the porous silica matrices, providing effective antimicrobial activity.  相似文献   

18.
In this study β-cyclodextrin (β-CD) was used to improve usnic acid (UA) solubility and the inclusion complex (UA:β-CD) was incorporated into liposomes in order to produce a targeted drug delivery system for exploiting the antimycobacterial activity of UA. A phase-solubility assay of UA in β-CD at pH 7.4 was performed. An apparent stability constant of K1:1 = 234.5 M?1 and a complexation efficiency of 0.005 was calculated. In the presence of 16 mM of β-CD the solubility of UA (7.3 μg/mL) increased more than 5-fold. The UA:β-CD complex was prepared using the freeze-drying technique and characterized through infrared and 1HNMR spectroscopy, X-ray diffraction and thermal analyses. The UA:β-CD inclusion complex presented IR spectral modifications when compared with UA and β-CD spectra. 1HNMR spectrum of UA:β-CD inclusion complex showed significant chemical shifts in proton H5 located inside the cavity of β-CD (Δδ = 0.127 ppm), suggesting that phenyl ring moiety of UA would be expected to be included within the β-CD cavity, interacting with the H-5 proton. A change in UA from its crystalline to amorphous form was observed on X-ray, suggesting the formation of a drug inclusion complex. DSC analysis showed the disappearance of the UA fusion peak UA:βCD complex. No differences between the antimicrobial activity of free UA and UA:βCD were found, supporting the hypothesis that the complexation with cyclodextrin did not interfere with drug activity. Liposomes containing UA:βCD were prepared using hydration of a thin lipid film method with subsequent sonication. Formulations of liposomes containing UA:βCD exhibited a drug encapsulation efficiency of 99.5% and remained stable for four months in a suspension form. Interestingly, the encapsulation of UA:βCD into the liposomes resulted in a modulation of in vitro kinetics of release of UA. Indeed, liposomes containing UA:β-CD presented a more prolonged release profile of free usnic acid compared to usnic acid-loaded liposomes.  相似文献   

19.
We report on a simple method for the determination of traces of aluminum(III) in water at pH 7.4 by using silver nanoparticles (Ag-NPs) functionalized with 8-hydroxyquinoline-5-sulfonate. The modified Ag-NPs undergo (a) a distinct color change from yellow to deep orange, and (b) a strong fluorescence enhancement upon addition of Al(III). Both the ratio of absorbances at 530 and 392 nm, and the intensity of fluorescence at 492 nm can serve as the analytical information. The absorption-based calibration plot increases linearly in the 0.1 to 4.0 μM Al(III) concentration range. The detection limit is 2.0 nM which is much lower than the permissible level (7.4 μM) for drinking water as defined by the World Health Organization. The method was successfully applied to the determination of Al(III) in samples of lake water, tap water and boiler water, and the recoveries were from 98 to 105 %. The assay also was applied to the determination of Al(III) in living mouse myeloma cells via fluorescence imaging. A linear relationship was obtained between relative fluorescence intensity (F/F0) and the concentration of Al(III) in the 0.05 μM to 4 μM concentration range. The detection limit is 15 nM.
A colorimetric assay for the traces Al3+ using silver nanoparticles (Ag-NPs) functionalized with 8-hydroxyquinoline-5-sulfonic acid was introduced. The color change was ascribed to aggregation of Ag-NPs induced by Al3+.  相似文献   

20.
Antimicrobial nanocomposite films containing oregano essential oil (EO) were prepared by solvent casting. Film matrix was composed of supramolecular poly(lactic acid)–cellulose nanocrystals (PLA–CNC) nanocomposite. Bioactive PLA–CNC–oregano films were prepared by incorporating oregano EO as an antimicrobial agent. Resulting films were then converted into packaging applied on mixed vegetables as a food model and stored for 14 days at 4 °C to determine their antimicrobial capacity against Listeria monocytogenes, their physico-chemical/structural properties and their total phenols (TP) release during storage, in order to evaluate the effect of oregano EO. It was observed the addition of oregano EO did not affect the water vapor permeability (WVP) of films, but increased their elongation at break (Eb) and reduced their tensile strength (TS) and tensile modulus (TM) at day 0. However, TS, TM, Eb and WVP values of control and bioactive films were increased slightly after 14 days of storage. FTIR analysis allowed characterizing the molecular interactions of oregano EO with PLA–CNC matrix via the identification and interpretation of their respective vibration bands. Microbiological analysis of mixed vegetables inoculated with L. monocytogenes (3 log CFU g?1) indicated that PLA–CNC–oregano films induced a quasi-total inhibition of bacteria in vegetables at day 14 and therefore demonstrated a strong antimicrobial capacity in situ. The percentage of TP release from bioactive films was determined by Folin–Ciocalteu’s method and results showed that TP release increased continuously from day 0 to day 14, up to 16.6 % at day 14. These results allowed demonstrating the strong antimicrobial capacity of PLA–CNC–oregano films for food packaging applications in vegetable produce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号