首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose nanocrystals (CNC) prepared from eucalyptus cellulose CNCs were modified by the reaction with methyl adipoyl chloride, CNCm, or with a mixture of acetic and sulfuric acid, CNCa. The CNC were either dispersed at 0.1 wt% in the pure solvents ethyl acetate (EA), tetrahydrofuran (THF) and dimethylformamide (DMF) or in cellulose acetate butyrate (CAB) solutions prepared in these solvents at 0.9 wt%. The colloidal behavior of these dispersions was systematically investigated using a phase separation analyzer LUMiReader®. The mechanical properties and morphological features of the films resulting from the mixtures of CAB and CNC were determined by dynamic mechanical analysis, optical microscopy and atomic force microscopy, respectively. Regardless the functional group attached to the surface of CNC, the best colloidal stability was observed for dispersions prepared in CAB/DMF solution. Higher degree of substitution of modified CNCs favored the colloidal stability in EA and THF. Composite films prepared from CAB/DMF solutions were more homogeneous and presented better mechanical performance than those prepared in CAB/EA or CAB/THF. The mechanical performance of composites and neat CAB prepared from DMF was CAB/CNCs > CAB/CNCm > CAB/CNCa > CAB, indicating that the modification weakens the percolation process, which is mediated by H bonding.  相似文献   

2.
Uniaxially oriented cellulose nanofibers were fabricated by electrospinning on a rotating cylinder collector. The fiber angular standard deviation (a parameter of fiber orientation) of the mats was varied from 65.6 to 26.2o by adjusting the rotational speed of the collector. Optically transparent epoxy resin composite films reinforced with the electrospun cellulose nanofibrous mats were then prepared by the solution impregnation method. The fiber content in the composite films was in the range of 5–30 wt%. Scanning electron microscopy studies showed that epoxy resin infiltrated and completely filled the pores in the mats. Indistinct epoxy/fiber interfaces, epoxy beads adhering on the fiber surfaces, and torn fiber remnants were found on the fractured composite film surfaces, indicating that the epoxy resin and cellulose fibers formed good interfacial adherence through hydrogen-bonding interaction. In the visible light range, the light transmittance was 88–92% for composite films with fiber loadings of 16–32 wt%. Compared to the composite films reinforced with 20 wt% randomly oriented fibers, the mechanical strength and Young’s modulus of the composite films reinforced with same amount of aligned fibers increased by 71 and 61%, respectively. Dynamical mechanical analysis showed that the storage moduli of the composite films were greatly reinforced in the temperature above the glass transition temperature of the epoxy resin matrix.  相似文献   

3.
Randomly oriented fiber mats of chitosan–polyethylene oxide matrix reinforced with cellulose nanocrystals (CNCs) were prepared by electrospinning technique. The cellulose nanocrystals used were isolated using hydrochloric acid (CNCHCl) or sulphuric acid (\({\text{CNC}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\)) and the concentration of CNCs was 50 wt% in the electrospun mats. The surface characteristics of the nanocrystals were found to affect the dispersion, viscosity, conductivity and zeta-potential of the respective spinning solutions and resulted in better spinnability, homogeneity as well as crosslinking of CNCHCl based nanocomposite fiber mats compared to \({\text{CNC}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\) ones. The microscopy studies showed that the diameter of the electrospun fibers decreased with the inclusion of both types of nanocrystals and that crosslinking decreased the porosity of the mats. The tensile strength and tensile modulus of the mats increased with the addition of nanocrystals and increased further for the CNCHCl based mats (58 MPa, 3.1 GPa) after crosslinking. The as-spun CNCHCl based mats had average pore diameters of 1.6 μm and porosity of 38 %. The water vapor permeability and the O2/CO2 transmission increased with the addition of CNCHCl. The used nanocrystals as well as electrospun mats showed non-cytotoxic impact on adipose derived stem cells (ASCs), which was considered favorable for wound dressing.  相似文献   

4.
碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究   总被引:1,自引:0,他引:1  
将多壁碳纳米管(MWCNTs)和聚苯硫醚(PPS)经过熔融挤出后制备成复合材料切片,并采用熔融纺丝法制得碳纳米管改性聚苯硫醚复合纤维.采用扫描电镜(SEM)、拉曼光谱、示差扫描量热分析(DSC)、动态机械分析(DMA)以及力学性能测试等表征手段研究了复合纤维中碳管的分散状态,与基体的界面作用,复合纤维的结晶性能以及力学性能,从而探讨了聚苯硫醚/碳纳米管复合纤维体系的微观结构与宏观性能之间的关系.研究表明,聚苯硫醚分子结构与碳纳米管之间具有的π-π共轭作用使碳管较为均匀的分散在基体中,界面结合较为紧密.同时熔融纺丝过程中的拉伸作用使碳管进一步解缠并使碳管沿纤维拉伸方向取向.另一方面,拉曼光谱显示拉伸作用有效地增强了界面作用,有利于外界应力的传递.碳管的良好分散以及强的界面作用使复合纤维力学性能得到大幅度的提高,当碳管含量达到5 wt%时,复合纤维的模量有了明显的提高,拉伸强度较纯PPS纤维提高了近220%.  相似文献   

5.
Thermoplastic fiber composites were prepared using high modulus lyocell (regenerated cellulose) fibers for reinforcement and cellulose acetate butyrate (CAB) as matrix. Choices were made with regard to fiber options (fabric versus continuous tow) and method of matrix deposition (prepregging by powder coating, film stacking, or solution impregnating). The results suggest that solution-prepregged fiber tow consolidated at circa 200°C produced unidirectional consolidated panels with tensile strength, modulus, and strain at failure values of approximately 250MPa,>20GPa and 3–4%, respectively, at fiber volume contents of approximately 60%. Modulus and ultimate tensile strength increased with fiber content, and modulus followed rule-of-mixture behavior. Adequate surface wetting and matrix-fiber adhesion were found with solution-prepregged composites. The unexpectedly low strain at failure (2 to <4%) was attributed to brittle matrix failure, and failure surfaces revealed that the fibers, for the most part, remained intact after the matrix had failed.  相似文献   

6.

The objective of this work is the use of cellulose fibers extracted from coir fibers as Janus nanocylinders to suppress the phase retraction and coalescence in poly(lactic) acid/polypropylene bio-blend polymers via prompting the selective localization of cellulose fibers at the interface using chemical modification. The untreated and modified cellulose fibers extracted from coir fibers using a silane molecule (tetraethoxysilane) were used as reinforcement and as Janus nanocylinder at two weight contents (2.5 wt% and 5 wt%) to manipulate the morphology of the bio-blends. Their bio-composites with PLA-PP matrix were prepared via melt compounding (at PLA/PP: 50/50). The treatment effect on component interaction and the bio-composites properties have been studied via Scanning electron microscopy, infrared spectroscopy, and differential calorimetry analysis. The mechanical and rheological properties of nanocomposites were similarly assessed. Young's modulus and tensile strength of PLA-PP nanocomposites reinforced by silanized cellulose fibers show a great enhancement as compared to a neat matrix. In particular, there was a gain of 18.5% in Young's modulus and 11.21% in tensile strength for silanized cellulose fiber-based bio-blend composites at 5 wt%. From the rheological point of view, it was found that the silanized cellulose fibers in PLA-PP at both fibers loading enhances the adhesion between both polymers leading to tuning their morphology from sea-island to the continuous structures with the appearance of PLA microfibrillar inside of bio-composites. This change was reflected in the relaxation of the chain mobility of the bio-blend composites.

  相似文献   

7.
In order to improve the spinning efficiency, the spinning experiments with cellulose/1-butyl-3-methylimidazolium chloride solution were done whilst increasing spinning speed. It was found that the tenacity and initial modulus of regenerated cellulose fibers increased but the elongation at break decreased slightly with increasing spinning speed at constant draw ratio. Further, the synchrotron wide-angle X-ray diffraction and small-angle X-ray scattering were carried out to illustrate the relationship between the structure and the mechanical properties. It was shown that the crystal orientation, crystallinity, amorphous orientation factor as well as orientation of the microvoids along the fiber increased with the spinning speed as the diameter of the microvoids in the fiber decreased. From the analysis of the spinline stress, it is clear that the spinline stress increased when both extruding and draw speed increased at constant draw ratio. This resulted in the improvement of supramolecular structure and mechanical properties of the regenerated cellulose fibers.  相似文献   

8.
Micro-fibrillar cellulose aqueous suspensions with different fiber lengths were prepared by mechanical refining of softwood pulp fiber suspensions at different specific refining energies. Effects of refining energy level, micro-fiber concentration and temperature on the rheological properties of these aqueous suspensions were studied. These microfibers form a three-dimensional network, which displays typical shear-thinning behavior with little thixotropic tendency, at concentrations as low as 0.5 wt%. A viscoelastic analysis showed that these micro-fibrillar cellulose suspensions at different concentrations (from 0.5 to 2 wt%) exhibit a viscoelastic gel-like behavior [G′ > G″ over an extended range of frequencies (ω) and a weak dependency of G′ on ω] at 25 °C. The storage modulus, G′, at 1 rad/s increased strongly upon increasing concentration from 0.5 to 2 wt% following a power law with an exponent of 3.2. However, increasing the temperature decreases the storage modulus, G′, due to weakening or disruption of intermolecular interactions at elevated temperatures. The viscoelastic behavior changes to liquid-like, with G″ > G′ at the investigated frequency range, for the suspensions at 85 °C.  相似文献   

9.
In this work, we report on the synthesis and characterization of thermoresponsive poly(N-vinylcaprolactam), PNVCL, nanocomposite hydrogels containing nanocrystalline cellulose (CNC) by the use of frontal polymerization technique, which is a convenient, easy and low energy-consuming method of macromolecular synthesis. CNC was obtained by acid hydrolysis of commercial microcrystalline cellulose and dispersed in dimethylsulfoxide. The dispersion was characterized by TEM analysis and mixed with suitable amounts of N-vinylcaprolactam for the synthesis of PNVCL nanocomposite hydrogels having a CNC concentration ranging between 0.20 and 2.0 wt%. The nanocomposite hydrogels were analyzed by SEM and their swelling and rheological features were investigated. It was found that CNC decreases the swelling ratio even at small concentration. The rheological properties of the hydrogels indicated that CNC strongly influenced the viscoelastic modulus, even at concentrations as low as 0.1 wt%: both G′ and G″, and the viscosity increase with CNC content, indicating that the nanocellulose has a great potential to reinforce PNVCL polymer hydrogels.  相似文献   

10.
Water-soluble, nonionic cellulose-based fibers were prepared from aqueous hydroxypropyl cellulose gels of 5–13-μm diameter by using a high-speed rotary spinning technique. A combination of texture analysis and viscosity measurement was applied to determine the optimum concentration of hydroxypropyl cellulose gels for fiber formation. The examined concentration range of hydroxypropyl cellulose gels was 38–52 % w/w. The textural properties including the adhesiveness of gels of different concentrations were determined based on the load-distance and load-time curves, while the obtained fiber formation was visually observed with an optical microscope. The texture analysis method enabled the determination of the optimum gel concentration from the point of fiber formation. An unequivocal correlation was determined between the adhesiveness of gels and their fiber-forming ability. The adhesiveness has a local minimum where the productivity of the fiber formation process and the micromorphology of the emitted fibers are optimal. Statistical analysis of the distribution of fiber diameters confirmed that in case of the optimum concentration, the distribution approaches normality. Mechanical properties of the prepared fibers were also evaluated using texture analysis, which indicated that the fibers made of gels of the suggested optimum concentration had the most desirable elastic behavior. An optimum concentration range of hydroxypropyl cellulose exists that enables fiber formation with the required characteristics from the point of further pharmaceutical formulation processing.  相似文献   

11.
Thermoplastic composites were prepared using two continuous regenerated cellulose fiber types, rayon and lyocell, and with several different commercially-available thermoplastic cellulose esters as matrix. Matrix options included cellulose acetate propionate (CAP), and several cellulose acetate butyrates (CAB) with different butyryl content, having different molecular weights and different methods of plasticization (adipates and very low molecular weight cellulose ester fractions). Choice of cellulose ester type was generally found to have little or no effect on mechanical properties. A significant effect, however, was revealed for fiber type. The lyocell-based composites thereby were reflective of the greater stiffness of a fiber produced from anisotropic solution state. Their modulus consistently exceeded 20GPa whereas the rayon fiber-based composites had moduli between 6 and 8GPa. The latter, however, possessed failure strains that were 3 to 4 times greater than their stiffer counterparts.  相似文献   

12.
Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite suspensions increased with higher CNC loadings and with longer aging times. PAN-co-MAA/CNC films maintained a similar level of optical transparency even with up to 40 wt% CNC loading. The glass transition temperature (Tg) increased from 92 to 118 °C, and the composites had higher thermal stability below 350 °C compared to both neat PAN-co-MAA and neat CNC. The mechanical properties also increased with higher CNC loadings, elastic modulus increased from 2.2 to 3.7 GPa, tensile strength increased from 75 to 132 MPa, and the storage modulus increased from 3.9 to 10.5 GPa. Using the Kelly and Tyson model the interfacial shear strength between the PAN-co-MAA and CNC was calculated to be 27 MPa.  相似文献   

13.
Microcrystalline cellulose-filled polypropylene (PP) composites and cellulose nanofiber-filled composites were prepared by melt blending. The compounded material was used to evaluate dispersion of cellulose fillers in the polypropylene matrix. Thermogravimetric analysis (TG) and mechanical testing were conducted on composites blended multiple times and the results were compared with single batch melt blended composites. The residual mass, tensile strength, and coefficient of variance values were used to evaluate dispersion of the microcrystalline cellulose fillers in the PP matrix. The potential of using TG to evaluate cellulose nanofiber-filled thermoplastic polymers was also investigated and it was found that the value and variability of residual mass after TG measurements can be a criterion for describing filler dispersion. A probabilistic approach is presented to evaluate the residual mass and tensile strength distribution, and the correlation between those two properties. Both the multiple melt blending and single batch composites manufactured with increased blending times showed improved filler dispersion in terms of variation and reliability of mechanical properties. The relationship between cellulose nanofiber loading and residual mass was in good agreement with the rule of mixtures. In this article, the authors propose to use a novel method for dispersion evaluation of natural fillers in a polymer matrix using TG residual mass analysis. This method can be used along with other techniques such as scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD) for filler dispersion evaluation in thermoplastic composites.  相似文献   

14.
Regenerated cellulose fibers were successfully prepared through dissolving cotton linters in NaOH/thiourea/urea aqueous solution at ?2 °C by a twin-screw extruder and wet-spinning process at varying precipitation and drawing conditions. The dissolution process of an optimized 7 wt% cellulose was controlled by polarizing microscopy and resulted in a transparent and stable cellulose spinning dope. Rheological investigations showed a classical shear thinning behavior of the cellulose/NaOH/thiourea/urea solution and a good stability towards gelation. Moreover, the mechanical properties, microstructures and morphology of the regenerated cellulose fibers were studied extensively by single fiber tensile testing, X-ray diffraction, synchrotron X-ray investigations, birefringence measurements and field-emission scanning electron microscopy. Resulting fibers demonstrated a smooth surface and circular cross-section with homogeneous morphological structure as compared with commercial viscose rayon. At optimized jet stretch ratio, acidic coagulation composition and temperature, the structural features and tensile properties depend first of all on the drawing ratio. In particular the crystallinity and orientation of the novel fibers rise with increasing draw ratio up to a maximum followed by a reduction due to over-drawing and oriented crystallites disruption. The microvoids in the fiber as analysed with SAXS were smaller and more elongated with increasing drawing ratio. Moreover, a higher tensile strength (2.22 cN/dtex) was obtained in the regenerated fiber than that of the viscose rayon (2.13 cN/dtex), indicating higher crystallinity and orientation, as well as more elongated and orientated microvoid in the regenerated fiber. All in all, the novel extruder-based method is beneficial with regard to the dissolution temperature and a simplified production process. Taking into account the reasonable fiber properties from the lab-trials, the suggested dissolution and spinning route may offer some prospects as an alternative cellulose processing route.  相似文献   

15.
Polyacrylonitrile (PAN)/cellulose composite fibers have been produced by dry-jet gel spinning through their co-solution. The rheological properties of PAN/cellulose/dimethylacetamide/LiCl solutions containing different cellulose contents from 0 to 10 wt% were characterized, and 5 wt% PAN/cellulose composite solution shows the best solution homogeneity. During gel spinning, the cellulose forms elongated particles inside the gelation bath, and the particle diameters depend on the as-spun draw ratio. It was found that the glass transition of PAN fibers shifts to higher temperatures along with the increase of cellulose content, and the glass transition activation energy of PAN chains becomes higher when cellulose particles become smaller. Regardless the changes of cellulose amount (2–10 wt%) and particle diameter (7.1–1.4 μm), the cyclization activation energy of PAN/cellulose composite fibers is 13–17% lower than that of neat PAN fibers. Our experiments suggest that the addition of cellulose in PAN fibers has no direct effect on the cyclization reaction of PAN chains. Instead, the released by-products during the pyrolysis of cellulose at high temperature degradation affect the cyclization reaction of PAN chains.  相似文献   

16.
Cellulose-synthetic polymer nanocomposite films were prepared by immersion of cellulose gel in polymer solutions followed by dry casting. The cellulose hydrogel was prepared from aqueous alkali-urea solution. As the synthetic polymer, polystyrene (PS) and poly(methyl methacrylate) (PMMA) were used. The polymer content could be changed between 10 and 80% by changing polymer concentration of immersing solution. While the mechanical properties of the cellulose-PMMA composite films showed a nearly linear dependence on PMMA content, those of cellulose-PS composites showed an anomalous behavior; both tensile strength and Young’s modulus showed prominent maxima at 15–30 wt% PS contents. This anomaly may have resulted from the specific interaction between the aromatic ring of PS and the hydrophobic plane of the glucopyranoside. Both PMMA and PS composite films showed significant improvements in dimensional thermal stability; up to 25 wt% synthetic polymer content, the coefficient of thermal expansion (CTE) was as low as ca. 30 ppm/K, about 1/3 of the pure polymers. This indicates that the regenerated cellulose network is effective in suppressing thermal expansion of the synthetic polymers.  相似文献   

17.
The structure and resultant mechanical properties of fibers in the dry-jet wet spinning process of cellulose solutions in N-methylmorpholine-N-oxide (NMMO) hydrates were investigated in terms of molecular weight of cellulose, concentration, and hydration number (n) of NMMO hydrate. The value of n had an effect on the crystallization behavior of the cellulose solution system, which influenced the resultant fiber structure. Increasing cellulose concentration and decreasing the value of n retarded crystallization because of the increased interactions between cellulose and NMMO hydrate. Reducing the value of n from 1 to 0.72 produced more highly oriented cellulose fibers. However, incorporating n-propyl gallate, an antioxidant, had little effect on the fiber structure. When n=0.72 a double crystallization behavior was observed in the fiber spinning process irrespective of molecular weight of cellulose and concentration over the experimental ranges examined. It should be noted that such a double crystallization took place in the absence of foreign additives. The double crystallization behavior was more noticeable when the aspect ratio of spinning nozzle was greater. The double layer structure had a positive effect on the mechanical strength.  相似文献   

18.
Polyvinyl alcohol (PVA)/cellulose nanocrystals (CNCs) compounds were successfully melt-processed by injection molding. During the processing, water was involved in the system as both the dispersion medium for CNCs and the plasticizer for PVA. Meanwhile, formamide was added to prevent the evaporation of water and to co-plasticize PVA. Thermal gravimetric analysis and differential scanning calorimetry indicated the melt processing window of PVA was expanded by 40 °C. Tensile tests showed that the mechanical properties of injection-molded samples were significantly improved with the addition of CNCs. The tensile strength of the composites increased from 32 to 58 MPa, and modulus increased from 175 to 1,252 MPa when 7 wt% CNCs was added. Moreover, the volume shrinkage of PVA nanocomposites upon drying as well as their water leaching rate could be remarkably reduced in the presence of CNCs.  相似文献   

19.
The aim of this study was to develop cellulose nanofibers with hydrophobic surface characteristics using chemical modification. Kenaf fibers were modified using acetic anhydride and cellulose nanofibers were isolated from the acetylated kenaf using mechanical isolation methods. Fourier transform infrared spectroscopy (FTIR) indicated acetylation of the hydroxyl groups of cellulose. The study of the dispersion demonstrated that acetylated cellulose nanofibers formed stable, well-dispersed suspensions in both acetone and ethanol. The contact angle measurements showed that the surface characteristics of nanofibers were changed from hydrophilic to more hydrophobic when acetylated. The microscopy study showed that the acetylation caused a swelling of the kenaf fiber cell wall and that the diameters of isolated nanofibers were between 5 and 50 nm. X-ray analysis showed that the acetylation process reduced the crystallinity of the fibers, whereas mechanical isolation increased it. The method used provides a novel processing route for producing cellulose nanofibers with hydrophobic surfaces.  相似文献   

20.
In this article, we successfully fabricated the bionanocomposites using cellulose nanocrystals (CNCs) and reduced graphene oxide (rGO) reinforced into biodegradable polylactic acid (PLA) matrix through melt‐mixing method. Due to the affinity difference between hydrophilic CNC and hydrophobic PLA, the surface modification of CNC was employed using quaternary ammonium salts (CTAB) as a surfactant. The nanocomposites were developed using different blend ratios of CNC/modified CNC (1, 2, and 3) wt% and (0.5 wt%) rGO into the polymer matrix. The morphology of CNC, q‐CNC (modified CNC), and nanocomposites were inspected by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). It is demonstrated from tensile tests that, the nanocomposite with 1 wt% CNC and rGO showed maximum tensile strength compared with PLA and its nanocomposites. Moreover, the nanocomposite with 1 wt% CNC and rGO was also having maximum thermal stability. From cytotoxicity evaluation, it is observed that all the nanocomposites are nontoxic and cytocompatible to HEK293 cells. In addition to this, the nanocomposite with q‐CNC showed enhanced barrier properties compared with PLA and PLA/CNC/rGO nanocomposite. The results obtained from different characterizations showed that the incorporation of surfactant onto CNC improved the dispersion in PLA but at the same time deteriorated the PLA matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号