首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urine is considered as one of the diagnostically important bio fluids, as it has many metabolites. The distribution and the physiochemical properties of the metabolites may vary during any altered metabolic and pathological conditions. Raman spectroscopy was employed in the characterization of the metabolites of human urine of normal subjects and oral cancer patients in the finger print region (500–1800 cm−1). Principal component analysis‐based linear discriminant analysis was performed to discriminate cancer patients from normal subjects. The discriminant analysis classifies the cancer patients from normal subjects with a sensitivity and specificity of 98.6% and 87.1%, respectively, with an overall accuracy of 93.7%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
应用傅里叶变换红外光谱(FTIR)联合主成分分析法(PCA),分析直肠癌转移淋巴结的谱学特征,并对直肠癌转移淋巴结和非转移淋巴结进行线性判别分析。80例直肠癌转移淋巴结和80例未转移淋巴结进行FTIR光谱分析,计算峰强并进行主成分分析,得出在波数4 000~1 700 cm-1范围主成分1(Principal components 1,PC1)是3 260 cm-1,PC2为1 740 cm-1。波数1 700~1 000 cm-1范围,PC1为1 640 cm-1,PC2为1 080 cm-1,将良、恶性淋巴结光谱3 260,1 740,1 640,1 080 cm-1相对峰强比(I/I1 460)和波数1 080和1 300 cm-1进行t检验,良、恶性结果差异有统计学意义(p<0.05),表明癌转移淋巴结中蛋白含量、蛋白的形成、氨基酸增多;脂肪含量明显减少与癌组织中无氧酵解脂肪含量减少有关。将相对峰强比(I1 080/I1 460, I1 640/I1 460, I3 260/I1 460, I1 740/I1 460, n=160)进行PCA聚类分析,结果显示可以将良恶性淋巴结鉴别,良性淋巴结聚类在第一和四象限,恶性淋巴结聚类在二和三象限。将相对峰强比、1 080和1 300 cm-1进行线性判别分析(LDA),将25例淋巴结作为验证集进行分析,得出PCA/LDA模型的敏感度是87.5%,特异度是88.5%。结果表明傅里叶变换红外光谱分析技术可成为术中原位、在体和快速诊断直肠癌淋巴结转移的一种简便方法。  相似文献   

3.
ABSTRACT

The combination of midinfrared (MIR) spectrum with chemometric methods provides an approach to study the Radix Angelicae sinensis (RAs) in relation to its geographical origin and harvest time. Random forests (RF) was applied to select the most effective wave-number variables from full MIR variables; as a result, three variables (3730 cm?1, 2310 cm?1, and 1050 cm?1) were selected for the discrimination of different RAs. The selected effective wave-number variables were put into linear discriminant analysis (LDA) and radial basis function neural networks (RBF-NNs) to establish the classification models. For the independent test set, the overall accuracy was 96.67%, 93.33%, and 96.67% for RF, LDA, and RBF-NNs models, respectively. These results show that MIR combined with chemometric methods might be a suitable way to classify RAs.  相似文献   

4.
A prism-based imaging system for simultaneously detecting four species of single-molecule (SM) fluorophores was developed. As for the detection method, four spectrally distinct species of BigDye fluorophores were bound to 50-nm-diameter gold nanoparticles (AuNPs) to form AuNP/BigDye complexes. Four species of complexes were randomly immobilized on different fused-silica slides. BigDyes were excited by an argon-ion-laser (excitation wavelengths: 488 and 514.5 nm) beam through total internal reflection on the slide surface. SM fluorescence emitted from a complex was spectrally dispersed through a prism to form an SM spot elongated in the spectral direction on a charge-coupled device. A scattered light spot generated by the AuNP of the same complex under 594-nm laser illumination was used as a wavelength reference, and the SM fluorescence spectrum was obtained from the pixel-intensity pattern of the elongated SM spot. Peak locations of fluorescence spectra of all the observed SM spots were obtained, and their histograms were distinctly separated according to species. SM spots can thus be classified as one of four species according to their peak locations. By statistically analyzing the histograms, the classification accuracy was estimated to be above 93.8 %. The number of pixels in the spectral direction required for classifying four species of SM fluorophores was estimated to be 10. As for the conventional system (which uses two excitation lasers), 15 pixels are required. Using BigDyes as the four fluorophores (which consist of donors linked to acceptors and can be excited by just an argon-ion laser) is the reason that such a small number of pixels was achieved. The developed system can thus detect 1.5 times more SM fluorophores per field of view; that is, its throughput is 1.5 times higher. The approach taken in this study, namely, using BigDye with a prism-type system, is effective for increasing the throughput of DNA microarray-chip analysis and SM real-time DNA sequencing.  相似文献   

5.
In the present work, we demonstrate the fabrication technique of highly translucent layers of nanoparticulated (~50 nm) LuPO4:Eu phosphor, present their basic luminescent properties and give results of their performance in a planar imaging system coupled to a CMOS photodetector. For comparison, the imaging performance of an opaque Gd2O2S:Eu phosphor screen prepared by sedimentation is also shown. The X-ray detection parameters as well as the luminescence efficiency of the investigated films were discussed. Results show that the in-line transmittance at ~600–700 nm, in the range of the phosphor luminescence, varies with respect to the thickness of the films from 40 to 50 % for a film of 67 μm thick to 4–12 % when the thickness increases to 460 μm. Yet, X-ray detection parameters get enhanced as the thickness of the films increases. Those results affect the luminescence efficiency curves of the films under poly-energetic X-ray radiation of various tube energies. The normalized noise power spectrum values were found similar for LuPO4:Eu films and a phosphor screen made using commercial Gd2O2S:Eu powder. The detective quantum efficiency of our films is clearly lower compared to the Gd2O2S:Eu screen from 2 to 10 cycles mm?1 frequency range while the modulation transfer function is lower from 0 to 5.5 cycles mm?1 frequency range. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains and thus without sacrificing their translucent character.  相似文献   

6.
This article reports on the physical and optical properties, absorption, and luminescence spectra in the visible region, of calcium zinc borophosphate glasses doped with manganese ions. The manganese composition was varied up to 10 mol%. The aim of this work was to investigate the effect of the luminescence properties when the glasses were doped with different compositions of manganese ions. X-ray diffraction profiles confirmed their glassy nature. The optical absorption spectrum showed bands characteristic of manganese ions in octahedral symmetry. Both excitation and emission spectra were recorded for these glasses to understand their optical performances. The emission spectrum showed a single broad band (green region) in octahedral symmetry at 582 nm as a result of transition from the upper 4T1g state to the 6A1g ground state of manganese ions. As the concentration of manganese ions increased, the emission band increased from 582 nm (green-light emission) to 650 nm (red-light emission). Apart from the spectral analysis, different physical properties of these glasses were also analyzed. Based on the physical and optical properties, we found the samples to be more promising for their use as novel luminescent optical materials.  相似文献   

7.
正常人和结直肠癌患者血清的拉曼光谱探测与区别   总被引:1,自引:0,他引:1  
本文对比分析了正常人和结直肠癌患者的血清的拉曼光谱.选择拉曼峰信息和荧光背景信息作为参数进行统计分析.用主成分回归(Principal component regression,PCR)和线性辨别分析(linear discriminant analysis,LDA)对所选参数进行分析以观察这些参数对光谱的代表性,得到...  相似文献   

8.
Raman spectroscopy has the potential to differentiate among the various stages leading to high‐grade cervical cancer such as normal, squamous metaplasia, and low‐grade cancer. For Raman spectroscopy to successfully differentiate among the stages, an applicable statistical method must be developed. Algorithms like linear discriminant analysis (LDA) are incapable of differentiating among three or more types of tissues. We developed a novel statistical method combining the method of maximum representation and discrimination feature (MRDF) to extract diagnostic information with sparse multinomial logistic regression (SMLR) to classify spectra based on nonlinear features for multiclass analysis of Raman spectra. We found that high‐grade spectra classified correctly 95% of the time; low‐grade data classified correctly 74% of the time, improving sensitivity from 92 to 98% and specificity from 81 to 96% suggesting that MRDF with SMLR is a more appropriate technique for categorizing Raman spectra. SMLR also outputs a posterior probability to evaluate the algorithm's accuracy. This combined method holds promise to diagnose subtle changes leading to cervical cancer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

Optical observation of lung cancer tissues using attenuated total reflectance–Fourier transform infrared microscope (ATR-FTIR) and confocal Raman microscope were performed. A total of six malignant tissues, seven tissues adjacent to cancer, and nine normal tissues from nine patients with known lung cancer were studied. High-quality spectra from human tissues were obtained only in a few seconds. The results revealed that some of the spectral characteristics varied significantly between normal and malignant tissues, that is, IR peak positions, Raman shift, and the spectral intensities. Differences in positions of 10 main peaks in IR shifts and 13 main peaks in Raman shifts were listed, and the intensity changes were also studied between the malignant and normal tissues. The ratios of 1453-cm?1/1645-cm?1 intensity in IR spectrum and 1245-cm?1/1571-cm?1 intensity in Raman spectrum were found with the most significant difference (p < 0.0001 and p < 0.05 separately) in statistics and may be used in combination to differentiate the normal and malignant tissues. ATR-FTIR spectrum and Raman spectrum were mutually complementary in the observation of many materials and were both found with high sensitivities and spatial resolutions in the observation of human tissues. This study will be helpful to developing rapid and accurate cancer detection techniques in future clinical diagnosis.  相似文献   

10.
傅里叶变换红外光谱通常包含有大量的波长变量点,对其进行定性分析需要建立稳健的、可解释性的分类模型。稀疏线性判别分析(SLDA)是一种较为新颖和有效的机器学习算法,常用于高维度、小样本数据的变量筛选和判别分析,SLDA通过在线性判别分析中引入正则项,使分类器训练过程和变量选择过程同时完成,不同判别方向上载荷系数的稀疏性则增强了模型的可解释性。采集甘肃不同产地的秦艽样本94个,其中麻花秦艽(Gentiana straminea Maxim)30个,黄管秦艽(Gentiana officinalis)28个,大叶秦艽(Gentiana macrophylla Pall)36个,利用傅里叶变换红外光谱法获得所有样本的光谱图。取其中70个样本构成训练集,剩余24个为测试集。使用训练集建立SLDA模型,对2个判别方向上不为0的载荷系数个数进行网格化寻优,得到了最优的参数空间。利用建立的SLDA模型对测试样本进行预测,其分类准确率达到100%,实现了对三种秦艽的快速、准确鉴别。实验结果表明,与PLS-DA方法相比,SLDA模型在分类准确率、稀疏性及可解释性方面均具有一定优势,是一种新颖、有效的光谱定性分析方法。  相似文献   

11.
表面增强拉曼光谱已经展示了其在低浓度体液的检测方面的优势。对21例肺癌患者和22例正常人的唾液进行了检测和区分。肺癌患者在多处波数位的峰强较正常人有所下降,只有少数峰强度上升且幅度较小。这些峰主要归属为蛋白质和核酸,表明肺癌患者唾液中这些成分的含量较正常人为少。主成分分析法(PCA)和线性辨别分析(LDA)被用于两组数据的降维和区分,所得结果准确度为84%,灵敏度为94%,特异性为81%。  相似文献   

12.
The luminescence of highly calcified atherosclerotic plaque in comparison with the luminescence of a normal wall of the vessel was studied in vitro (the luminescence was excited by a CW argon laser with λ = 488 nm or a pulsed nitrogen laser with λ = 337 nm). The mass-spectroscopy analysis of the plaque was carried out with a LAMMA-1000 system. It is ascertained that the specific shape of the luminescence spectrum with maximum at λ = 560 nm (under argon laser excitation) and λ = 485 nm (under nitrogen laser excitation) is typical of a highly calcified plaque (Ca content ≈38 %) and is similar to the luminescence spectrum of ordinary chalk.  相似文献   

13.
A simple, rapid, sensitive and selective method for simultaneously determining xanthopterin and isoxanthopterin content in human urine has been developed using synchronous fluorescence spectroscopy based on their intrinsic fluorescence. The synchronous fluorescence spectra were obtained with Δλ = 65 nm in a pH 8.5 KH2PO4-NaOH buffer solution. The detected wavelengths of quantitative analysis were set at 410 nm for xanthopterin and 325 nm for isoxanthopterin, respectively. Pretreatment of urine samples only was filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. Under optimized conditions, the limits of detection (LOD) were 0.94 ng/mL for xanthopterin and 0.48 ng/mL for isoxanthopterin. The recoveries ranged from 88.0% to 103.8 % for healthy and cancer urine samples, with coefficient of variation between 2.09% and 7.06%. The proposed method has been successfully applied to the simultaneous analysis for xanthopterin and isoxanthopterin in human urine. The results showed that the average level of isoxanthopterin was significantly elevated in urine excreted by stomach cancer patients (P < 0.01), while no significant change of xanthopterin level was found between stomach cancer patients and healthy individuals. This potentially indicates that an increase in amounts of isoxanthopterin can be associated with the presence of stomach cancer.  相似文献   

14.
Over recent years, Raman spectroscopy has been demonstrated as a prospective tool for application in cancer diagnostics. The use of Raman spectroscopy for this purpose relies on pattern recognition methods that have been developed to perform well on data achieved under laboratory conditions. However, the application of Raman spectroscopy as a routine clinical tool is likely to result in imperfect data due to instrument‐to‐instrument variation. Such corruption to the pure tissue spectral data is expected to negatively impact the classification performance of the diagnostic model. In this paper, we present a thorough assessment of the robustness of the Raman approach. This was achieved by perturbing a set of spectra in different ways, including various linear shifts, nonlinear shifts and random noise and using previously optimised classification models to predict the class membership of each spectrum in a testing set. The loss of predictive power with increased corruption was used to calculate a score, which allows an easy comparison of the model robustness. For this approach, three different types of classification models, including linear discriminant analysis (LDA), partial least square discriminant analysis (PLS‐DA) and support vector machine (SVM), built for lymph node diagnostics were the subject of the robustness testing. The results showed that a linear perturbation had the highest impact on the performance of all classification models. Among all linear corruption methods, a gradient y‐shift resulted in the highest performance loss. Thus, the factor most likely to affect the predictive outcome of models when using different systems is a gradient y‐shift. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Multi-photon absorption induced luminescence (MAIL) from bare gold nanoparticles, silica-coated particles, as well as silica-coated agglomerated gold nanoparticles suspended in aqueous solution was studied by using time-resolved and steady-state luminescence spectroscopy. The nanoparticles were excited by femtosecond pulses of wavelengths ranging from 630 nm to 900 nm. The luminescence from the particles exhibits a broad spectrum in the UV and VIS region. The time-resolved measurements indicate a luminescence lifetime of a few ps, limited by the response of the experimental system. The studied dependence of the MAIL efficiency on the excitation wavelength showed that the luminescence from silica-coated agglomerates was enhanced over the whole range of excitation wavelengths, when compared to the luminescence from individual gold nanoparticles. The agglomerates show an almost excitation wavelength independent efficiency of the MAIL, while for individual nanoparticles a rapid decrease of the MAIL efficiency was observed with increasing excitation wavelength. The observed enhancement of the MAIL from the agglomerated nanostructures can be attributed to the presence of localized surface plasmon resonances in the spectral region corresponding to the excitation wavelengths. The high MAIL efficiency from the agglomerated nanoparticle structures in the near-infrared could be an advantage in the expanding field of luminescence-based-imaging, as well as in biosensor technology.  相似文献   

16.
Breast cancer is the most common cancer amongst women worldwide. Early detection of this cancer results in better prognosis. Owing to the disadvantages of currently available screening tools for early detection of this cancer, rapid and sensitive alternatives such as optical spectroscopic techniques are being extensively explored. Detection of premalignant lesions using these techniques has been reported. However, premalignant lesions are risk indicators and may not be true predictors of tumor development. Therefore, the current study aims at correlation between spectral changes and tumor appearance. In this context, transcutaneous in vivo spectra were acquired from same carcinogen‐induced rats immediately before carcinogen treatment, 3, 8–10, and 12–14 weeks after carcinogen treatment and from frank tumors. These were analyzed using multivariate statistical tools principal component analysis and principal component linear discriminant analysis. Further, a complex test data set consisting of spectra from rats of varying ages, tumor appearance times, and tumor induction protocols was used to test the feasibility of correctly identifying controls and pretumors using Raman spectroscopy. Results suggest feasibility of distinguishing pretumor spectra from controls. Taking into consideration the heterogeneity of afflicted breast, rat‐wise analysis was performed wherein a rat was declared ‘will develop tumor’, even if one spectrum was found abnormal. Using this criterion, in vivo Raman spectroscopy could predict tumor appearance with 82% sensitivity and 95% specificity. Prospectively, combined with emerging technologies like deep Raman spectroscopy and fiber‐probe‐based whole sample imaging, Raman spectroscopy may prove as an invaluable adjunct to currently available breast cancer screening tools. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity (r 1) of 0.12 s?1 mM?1 and transverse relaxivity (r 2) of 28.18 s?1 mM?1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential bimodal imaging.  相似文献   

18.
This paper presents the development of a semi-quantitative method of measuring the creatinine biomolecule in human urine by the surface enhanced Raman scattering (SERS) technique. Creatinine is one of the major components of urine and can be used to represent the metabolic and renal function of the human body. The Raman signal of creatinine is enhanced by 50 nm Au nanoparticles. Raman spectra between 1400 and 1500 cm?1 were analyzed to obtain the relationship between the SERS band area and creatinine concentration. The square of the correlation coefficient is 0.99 in artificial urine over the creatinine range 38.4–153.6 mg/dl. In a human urine experiment, a good linear correlation is observed over the creatinine concentration range 2.56–6.4 mg/dl. The square of correlation coefficient is 0.96.  相似文献   

19.
Absorption and luminescence properties of silver nanoclusters embedded in SiO2 matrixes were studied experimentally. Thin SiO2 films with different amount of silver were produced by co-deposition of Ag and SiO2 onto the silica substrates in vacuum. The thus obtained films possess three peaks in absorption spectra at 297, 329 and 401 nm and two peaks in luminescence spectra at about 500 and 650 nm. We ascribed these spectral features to silver nanoclusters of different sizes that present in the film. Thermal annealing transforms both absorption and emission spectra of the films. Lager clusters that are formed after annealing possess one absorption band at 350–450 nm and one luminescence band at 510 nm. The luminescence was observed only in samples with the silver content of less than 2.2%. Quenching of the luminescence in samples with higher concentration of silver is due to the presence of larger particles with plasmonic properties.  相似文献   

20.
Lung cancer takes a heavy toll every year, since the survival rate is not more than 15%. In this paper, we present results of a novel technique based on the autofluorescence of body fluids like blood plasma, acetone extract of cellular components, sputa and urine of lung cancer patients (N = 27). A set of ratio parameters based on the fluorescence peaks of tryptophan and elastin, in plasma and sputum; flavin, NADH (reduced nicotinamide adenine dinucleotide) and porphyrin in urine; porphyrin alone in acetone extract of formed elements, were all evaluated. Similar sets of ratios were obtained for age adjusted normal controls (N = 27) and all these ratios were given as inputs to multivariate (principle component and discriminant) analyses, which showed that the two groups could be classified with an accuracy of about 90%. Since the instrumentation involved was an ordinary steady state Xe lamp based spectrofluorometer, the technique is of significant advantage in screening and early detection of lung cancer in high risk population such as heavy smokers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号