首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J?cm?2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J?cm?2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites’ columnar growth.  相似文献   

2.
We provide guidelines to femtosecond laser users to select ad hoc laser parameters, namely the fluence and pulse duration, in the context of the development of ablation processes at the surface of dielectrics using single femtosecond pulses. Our results and discussion are based on a comprehensive experimental and theoretical analysis of the energy deposition process at the surface of fused silica samples and of their postmortem ablation characteristics, in the range of intensities from 1013 to 1015 W/cm2. We show experimentally and numerically that self-induced plasma transient properties at the pulse timescale dramatically determine the efficiency of energy deposition and affect the resulting ablation morphology. In practice, we determine that the precise measurement of two characteristic fluence values, namely the laser-induced ablation threshold F th,LIAT and the fluence F opt for maximum ablation efficiency, are only required to qualify the outcomes of laser ablation at the surface of a dielectric in an extended range of applied fluence.  相似文献   

3.
ZrC/TiN and ZrC/ZrN multilayers thinner than 350 nm were grown on (100) Si substrates at a temperature of 300 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser (λ=248 nm, pulse duration τ=25 ns, 8.0 J/cm2 fluence and 40 Hz repetition rate). Cross-sectional transmission electron microscopy, Auger electron spectroscopy depth profiling and simulations of X-ray reflectivity curves indicated that there was intermixing between the deposited layers at the interfaces as well as between the first layer and the substrate. Nanoindentation investigations found hardness values between 35 and 38 GPa for the deposited multilayers. Linear unidirectional sliding wear tests were conducted using a ball-on-plate tribometer under 1 N normal force. Wear tracks were produced in a Hysitron nanoindenter with 1 μm radius diamond tip under a 500 μN load. High-resolution cross-sectional transmission electron microscopy studies of the wear tracks showed that the multilayers withstood these tests without significant damage. The results could be explained by the use of a high laser fluence during deposition that resulted in very dense and strongly adherent nanocrystalline layers.  相似文献   

4.
A Nd:YAG laser operating at the fundamental wavelength (1064 nm) and at the second harmonic (532 nm), with 9 ns pulse duration, 100–900 mJ pulse energy, and 30 Hz repetition rate mode, was employed to ablate in vacuum (10?6 mbar) biomaterial targets and to deposit thin films on substrate backings. Titanium target was ablated at the fundamental frequency and deposited on near-Si substrates. The ablation yield increases with the laser fluence and at 40 J/cm 2 the ablation yield for titanium is 1.2×1016 atoms/pulse. Thin film of titanium was deposited on silicon substrates placed at different distance and angles with respect to the target and analysed with different surface techniques (optical microscopy, scanning electron spectrosopy (SEM), and surface profile).

Hydroxyapatite (HA) target was ablated to the second harmonic and thin films were deposited on Ti and Si substrates. The ablation yield at a laser fluence of 10 J/cm 2 is about 5×1014 HA molecules/pulse. Thin film of HA, deposited on silicon substrates placed at different distance and angles with respect to the target, was analysed with different surface techniques (optical microscopy, SEM, and Raman spectroscopy).

Metallic films show high uniformity and absence of grains, whereas the bio-ceramic film shows a large grain size distribution. Both films found special application in the field of biomaterial coverage.  相似文献   

5.
A single-crystal CaF2 (111) was irradiated with single and multiple laser (Ti:sapphire, 800 nm, 25 fs) shots at fluences ranging from 0.25 to 1.5 J cm?2. In this fluence regime, a single laser pulse usually leads to typical bump-like features ranging from 200 nm to 1.5 μm in diameter and 10–50 nm in height. These bumps are related to compressive stresses due to a pressure build-up induced by fast laser heating and their subsequent relaxation. When CaF2 is irradiated with successive (in our case 20) shots at a laser fluence of 1.5 J cm?2, nanocavities at the top of the microbumps are observed. The formation of these nanocavities is regarded as an explosion and is attributed to the explosive expansion generated by shock waves due to laser-induced plasma after the nonlinear absorption of the laser energy by the material. Such kinds of surface structures at the nanometre scale could be attractive for nanolithography.  相似文献   

6.
Through femtosecond (fs) laser pulse irradiation (pulse duration: 65 fs, central wavelength: 800 nm, and repetition rate: 250 Hz), we investigate the morphological evolution of fs laser-induced periodic surface structure on Au and Pt, called a nanostructure-covered large-scale wave (NC-LSW) with a period of tens of microns, densely covered by iterating stripe patterns of nanostructures and microstructures. We show that the surface morphology of NC-LSW crucially depends on the fluence of the laser, the number of irradiating pulses, and the incident beam angle. Our experimental observations allow us to establish a three-step model for the NC-LSW formation: the formation of laser-induced surface unevenness, inhomogeneous energy deposition due to the interference between the incident light and the scattered field, and nonuniform energy deposition due to shielding by the peaks of LSW.  相似文献   

7.
This study investigates the effects of pulse energy distributions on subwavelength ripple structures (the ablation shapes and subwavelength ripples) using the plasma model with the consideration of laser particle–wave duality. In the case studies, the laser pulse (800 nm, 50 fs) trains consist of double pulses within a train with the energy ratios of 1:2, 1:1, and 2:1. Localized transient electron densities, material optical properties, and surface plasmon generation are strongly affected by the energy distributions. Hence, the adjustment of the ablation shape and subwavelength ripples can be achieved based on localized transient electron dynamics control during femtosecond laser pulse train processing of dielectrics. The simulation results show that better, more uniform structures, in terms of ablation shapes and subwavelength ripples, can be easily formed at a lower fluence or subpulse energy ratio of 1:1 with a fixed fluence. It is also found that pulse trains at a 1:1 energy ratio are preferred for drilling high-aspect-ratio microholes or microchannels.  相似文献   

8.
We investigated the ion laser-produced plasma plume generated during ultrafast laser ablation of copper and silicon targets in high vacuum. The ablation plasma was induced by ≈50 fs, 800 nm Ti:Sa laser pulses irradiating the target surface at an angle of 45°. An ion probe was used to investigate the time-of-flight profiles of the emitted ions in a laser fluence range from the ablation threshold up to ≈10 J/cm2. The angular distribution of the ion flux and average velocity of the produced ions were studied by moving the ion probe on a circle around the ablation spot. The angular distribution of the ion flux is well described by an adiabatic and isentropic model of expansion of a plume produced by laser ablation of solid targets. The angular distribution of the ion flux narrows as the laser pulse fluence increases. Moreover, the ion average velocity reaches values of several tens of km/s, evidencing the presence of ions with kinetic energy of several hundred eV. Finally, the ion flux energy is confined in a narrow angular region around the target normal.  相似文献   

9.
We report on the fabrication of graphitic columns induced in single-crystal diamond plates using 100 fs laser pulses at 800 nm wavelength. Different values of laser fluence (0.6–1.2 J/cm2) and graphitization speed (1–100 μm/s) were used for the laser treatment. A Raman investigation was performed aimed at evaluating the structural properties of the fabricated columns, showing that a lower laser fluence and a proper choice of graphitization speed may improve the degree of graphite crystallinity, and suppress the residual diamond content.  相似文献   

10.
Copper oxide nanoparticles produced in double distilled water at room temperature by laser ablation of the Cu target have been investigated using TEM, SEM, AFM, X-ray diffraction, photo-spectrometry and PIXE. Q-switched Nd:YAG laser operating at 1064 nm with a pulse duration of 5–6 ns was used to conduct the experiments in the fluence range of 5.73–9.87 J/cm2. In each experiment, 12,000 laser pulses were used to ablate the target placed in double distilled water. Different diagnostic techniques reveal that the nanoparticles have a size between 2–55 nm and their mean size as well as the width of particle distribution increases with the laser fluence. Since no surface active material (surfactant) was added to water, the nanoparticles aggregated and settled down at the bottom of the container within a week. In addition to stable Cu2O, the XRD spectrum also shows the presence of suboxide Cu64O in the colloidal solution of nanoparticles produced in the present study.  相似文献   

11.
Ultrafast thermomechanical responses of silicon thin films due to ultrashort-pulsed laser irradiation were investigated using an atomic-level hybrid method coupling the molecular dynamics and the ultrafast two-step energy transport model. The dynamic reflectivity and absorption were considered, and the effects of laser fluence and pulse duration on the thermomechanical response were studied. It was found that both the carrier temperature and number density rapidly increase to their maximum while the lattice temperature rises at a much slower rate. The ultrafast laser heating could induce a strong stress wave in the film, with the maximum compressive and tensile stress occurring near the front and back surfaces, respectively. For laser pulses of the same duration, the higher the laser fluence is, the higher the carrier temperature and density and lattice temperature are induced. For the same laser fluence, a longer pulse generally produces lower carrier density and temperatures and weaker stress shock strength. However, for the fluence of 0.2 J/cm2, the lowest lattice temperature was simulated for a 100-fs pulse compared to the 1-ps and 5-ps pulses, due to the increase of reflectivity by high carrier density. It is also shown that the optical properties as functions of lattice temperature usually employed are not suited for modeling ultrafast laser interactions with silicon materials.  相似文献   

12.
ZnPc thin films were prepared by pulsed laser deposition (KrF laser, λ = 248 nm, τ = 5 ns, f = 50 Hz) on suprasil substrates in vacuum. Optical properties in UV–Vis spectral region were analyzed as functions of laser fluence from 40 to 100 mJ/cm2 by spectrophotometric and spectral ellipsometry measurements. The spectral ellipsometry data were treated using a three-layer model (substrate, film, roughness). The best results of data fitting were obtained when Q band was characterized by two Lorentz oscillators, while two Gaussian oscillators were used for B and C band fitting. We derived the band gap using Tauc plot considering ZnPc a direct band gap semiconductor. The band gap values were found decreasing from 3.13 to 3.09 eV with increasing laser fluence, which might be related with formation of trapping sites at higher fluence.  相似文献   

13.
A high-temporal contrast femtosecond Stokes pulse near 1,053 nm is obtained simply without polarizer extinction ratio limitation based on the stimulated Raman frequency shift process in ethanol with an 800-nm femtosecond Ti:sapphire laser as a pump source. By optimizing the incident pump pulse chirp and the ethanol Raman cell length, a clean Stokes pulse near 1,053 nm with a maximum energy of 0.24 mJ is obtained with ~7.5 % conversion efficiency and 0.8 % (rms) energy fluctuation. Compared with the incident pump pulse, the temporal contrast of the Stokes pulse is improved by at least approximately three orders of magnitude.  相似文献   

14.
We have studied the effects of laser fluence on the characteristics of graphene nanosheets produced by pulsed laser ablation technique. In this work, The second harmonic of a Q-switched Nd:YAG laser at 532 nm wavelength and 5 Hz repetition rate with different laser fluences in the range of 0.5–1.8 J/cm2 was used to irradiate the graphite target in liquid nitrogen medium. The products of ablation were characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction pattern, UV–Vis absorption spectroscopy, Raman spectrum and transmission electron microscopy. The Raman spectroscopy indicates that the quality of the graphene nanosheets was decreased while their structure defects were increased as the laser fluence was increased from 0.5 to 1.4 J/cm2. Our results suggest that the amount of defects and the number of layers in graphene nanosheets can be changed by adjusting the laser fluence. This study could be a useful guidance for producing of high quality of graphene nanosheets by laser ablation method.  相似文献   

15.
This paper presents the optimal conditions for the ultraviolet laser percussion drilling of alumina materials intended for use in heat sinks. The Taguchi method and grey relational analysis, along with the consideration of multiple quality characteristics, were applied for determining the optimal parameters. The entrance diameter and taper angle of the drilled hole were affected by the material processing parameters, including laser power, pulse duration, focal plane position, and number of pulses. The Taguchi method and grey relational analysis were used for assessing the effects of the operational parameters on multiple performance characteristics. Nine experiments based on an orthogonal array were performed. According to the results, the optimal process parameters were as follows: laser energy density, 3.82 J/cm2; focal plane position, 0.1 mm; number of pulses, 20 shots; and single pulse duration, 3 ms. Analysis of the grey relational grade revealed that the focal plane position was the most dominant parameter.  相似文献   

16.
Single-shot ablation threshold for thin chromium film was studied using 266 nm, femtosecond laser pulses. Chromium is a useful material in the nanotechnology industry and information on ablation threshold using UV femtosecond pulses would help in precise micromachining of the material. The ablation threshold was determined by measuring the ablation crater diameters as a function of incident laser pulse energy. Absorption of 266 nm light on the chromium film was also measured under our experimental conditions, and the absorbed energy single-shot ablation threshold fluence was \(46 \pm 5\)  mJ/cm2. The experimental ablation threshold fluence value was compared to time-dependent heat flow calculations based on the two temperature model for ultrafast laser pulses. The model predicts a value of 31.6 mJ/cm2 which is qualitatively consistent with the experimentally obtained value, given the simplicity of the model.  相似文献   

17.
The effect of fluence and pulse duration on the growth of nanostructures on chromium (Cr) surfaces has been investigated upon irradiation of femtosecond (fs) laser pulses in a liquid confined environment of ethanol. In order to explore the effect of fluence, targets were exposed to 1000 pulses at various peak fluences ranging from 4.7 to 11.8?J?cm–2 for pulse duration of ~25?fs. In order to explore the effect of pulse duration, targets were exposed to fs laser pulses of various pulse durations ranging from 25 to 100?fs, for a constant fluence of 11.8?J?cm–2. Surface morphology and structural transformations have been analyzed by scanning electron microscopy and Raman spectroscopy, respectively. After laser irradiation, disordered sputtered surface with intense melting and cracking is obtained at the central ablated areas, which are augmented with increasing laser fluence due to enhanced thermal effects. At the peripheral ablated areas, where local fluence is approximately in the range of 1.4–4?mJ?cm–2, very well-defined laser-induced periodic surface structures (LIPSS) with periodicity ranging from 270 to 370?nm along with dot-like structures are formed. As far as the pulse duration is concerned, a significant effect on the surface modification of Cr has been revealed. In the central ablated areas, for the shortest pulse duration (25?fs), only melting has been observed. However, LIPSS with dot-like structures and droplets have been grown for longer pulse durations. The periodicity of LIPSS increases and density of dot-like structures decreases with increasing pulse duration. The chemical and structural modifications of irradiated Cr have been revealed by Raman spectroscopy. It confirms the formation of new bands of chromium oxides and enol complexes or Cr-carbonyl compounds. The peak intensities of identified bands are dependent upon laser fluence and pulse duration.  相似文献   

18.
An experimental study is presented on measurements of optical spectrum of the laser light scattered from solid surface irradiated by Ti:sapphire laser pulses up to an intensity of 1.2 × 1018 W cm−2. The spectrum has well-defined peaks at wavelengths corresponding to 2ω and 3/2ω radiations. The spectral features vary with the laser intensity and show blue-shift with increasing laser intensity. At a constant laser fluence, the spectrum is red-shifted with increasing laser pulse duration. The observed results are explained in terms of the density scale length variation of the plasma and laser chirp.  相似文献   

19.
We investigate samples of austenitic materials ?C stainless steel and iron-based superalloy ?C which are widely used at high temperatures and pressures. The samples were exposed to Nd3+:YAG laser pulses with a wavelength of 1064 nm and a pulse duration of 170 ps. We employ different pulse energies and number of pulses. The spots appearing after the laser irradiation were examined by optical and scanning electron microscopy and analyzed by energy-dispersive spectroscopy. We also perform Vickers microhardness tests. We discuss the microstructure changes caused by different energy and number of pulses in air and in a He-enriched atmosphere with the aim to determine optimum laser parameters in surface-treatment technology.  相似文献   

20.
Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号