首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable silver nanoparticles were synthesized with the aid of a novel, non-toxic, eco-friendly biological material namely, green pepper extract. The aqueous pepper extract was used for reducing silver nitrate. The synthesized silver nanoparticles were analyzed with transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). TEM image shows the formation of silver nanoparticles with average particle size of 20 nm which agrees well with the XRD data. The main advantage of using pepper extract as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. To investigate the electrocatalytic efficiency of silver nanoparticles, silver nanoparticles modified carbon-paste electrode (AgNPs–CPE) displayed excellent electrochemical catalytic activities towards hydrogen peroxide (H2O2) and hydrogen evolution reaction (HER). The reduction overpotential of H2O2 was decreased significantly compared with those obtained at the bare CPE. An abrupt increase of the cathodic current for HER was observed at modified electrode. Also, the antibacterial activity of silver nanoparticle was performed using Escherichia coli and Salmonellae. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.  相似文献   

2.
The silver nanoparticles (AgNPs) synthesized using hot water olive leaf extracts (OLE) as reducing and stabilizing agent are reported and evaluated for antibacterial activity against drug resistant bacterial isolates. The effect of extract concentration, contact time, pH and temperature on the reaction rate and the shape of the Ag nanoparticles are investigated. The data revealed that the rate of formation of the nanosilver increased significantly in the basic medium with increasing temperature. The nature of AgNPs synthesized was analyzed by UV–vis spectroscopy, X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis (TGA). The silver nanoparticles were with an average size of 20–25 nm and mostly spherical. The antibacterial potential of synthesized AgNPs was compared with that of aqueous OLE by well diffusion method. The AgNPs at 0.03–0.07 mg/ml concentration significantly inhibited bacterial growth against multi drug resistant Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). This study revealed that the aqueous olive leaf extract has no effect at the concentrations used for preparation of the Ag nanoparticles. Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future.  相似文献   

3.
A facile, convenient and green method has been employed for the synthesis of silver nanoparticles (AgNPs) using dried biomass of a green alga, Chlorella ellipsoidea. The phytochemicals from the alga, as a mild and non-toxic source, are believed to serve as both reducing and stabilizing agents. The formation of silver nanoparticles was confirmed from the appearance of a surface plasmon resonance band at 436 nm and energy dispersive X-ray spectroscopy. The transmission electron microscopy images showed the nanoparticles to be nearly spherical in shape with different sizes. A dynamic light scattering study revealed the average particle size to be 220.8 ± 31.3 nm. Fourier transform infrared spectroscopy revealed the occurrence of alga-derived phytochemicals attached to the outer surface of biogenically accessed silver nanoparticles. The powder X-ray diffraction study revealed the face-centred cubic crystalline structure of the nanoparticles. The as-synthesized biomatrix-loaded AgNPs exhibited a high photocatalytic activity for the degradation of the hazardous pollutant dyes methylene blue and methyl orange. The catalytic efficiency was sustained even after three reduction cycles. A kinetic study indicated the degradation rates to be pseudo-first order with the degradation rate being 4.72 × 10−2 min−1 for methylene blue and 3.24 × 10−2 min−1 for methyl orange. The AgNPs also exhibited significant antibacterial activity against four selected pathogenic bacterial strains.  相似文献   

4.
In recent decades, nanotechnology has been empowered as a new and developing interdisciplinary region of science and innovation that coordinates material science and biology. Nanoscience and nanotechnology open up new streets of examination that are helpful in synthesizing novel nanomaterials with remarkable applications. Among different metal nanomaterials, silver nanoparticles (AgNPs) attracted the attention of researchers due to their versatile antibacterial characteristics and biological properties. Biogenically synthesizing AgNPs from plants and microorganisms seems to be a highly promising alternative for developing a technology that is both environmentally benign and fast. Plants and microorganisms' ability to synthesize AgNPs has mostly remained untapped, and the lack of investigation is due to the vast variety of plants and microorganisms. This review aims to describe the current progress in various synthetic techniques for AgNPs and their potential for antibacterial applications. It discusses biogenic synthetic approaches, the role of various metabolites in the growth processes of AgNPs with antibacterial implications, bactericidal mechanisms, and the influence of operational parameters on AgNPs synthesis. Furthermore, the present status, critical challenges, and future outlook of AgNPs will be explored, which will definitely affect their present and future scenarios. We believe that by focusing readers' attention on nature-inspired, biogenically synthesized AgNPs and their bactericidal applications, this review will enable them to formulate a new perspective.  相似文献   

5.
Research on Chemical Intermediates - Silver nanoparticles (AgNPs) synthesized on the surface of chitosan (CS) films using ultraviolet (UV) and natural light irradiation reduction methods were...  相似文献   

6.
Research on Chemical Intermediates - In this study, rapid and cost-effective biosynthesis of silver nanoparticles (AgNPs) was synthesized by using Piper longum (P. longum) catkin extract. The...  相似文献   

7.
Grass waste was used for transform an inexpensive waste into health. Silver nanoparticles (AgNPs) have been synthesized using waste material (dried grass). The average size of silver nanoparticles observed in transmission electron images was estimated to be about 15?nm. The anticancer, antifungal and antibacterial effect of AgNPs were studied in vitro. The minimum inhibitory concentration of AgNPs against Pseudomonas aeruginosa and Acinetobacter baumannii was calculated about 3?µg/ml. The highest level of inhibitory effect of AgNPs against Fusarium solani was close to 90% at a concentration of 20?μg/ml of AgNPs. An inhibitory effect on the cancer cell growth is reach, by increasing the concentration of AgNPs to 5?µg/ml; the cancer cells’ survival decreases about 30%. Western results showed that the expression of Cyclin D1 protein of MCF-7 cell line decreased after treatment with the effective concentration of AgNPs.  相似文献   

8.
An eco-friendly chemical reduction method was successfully used for the preparation of chitosan (CTS) composite films loaded with silver nanoparticles (AgNPs) by self assembly method using poly(ethylene glycol) as both reducing and stabilizing agent. UV-Vis spectra of the prepared chitosan loaded silver nanoparticles (CTSLAg) films reveal that full reduction of silver ions to silver nanoparticles takes place at 90 °C. The effect of reaction conditions on the silver nanoparticles formation was investigated using UV-Vis spectrophotometer. The morphology of the films was tested by scanning electron microscopy (SEM). The DSC curves showed that the CTSLAg film had a favorable compatibility and heat stability. AgNPs were confirmed by XRD and UV-Vis spectroscopy. The TEM findings revealed that the silver nanoparticles synthesized were spherical in shape with uniform dispersal, and by increasing CTS:PEG ratio larger silver nanoparticles could be obtained. The results of antibacterial study reveal that the prepared nanocomposite films exhibited potential inhibition.  相似文献   

9.
Research on Chemical Intermediates - The aim of the present study was to focus on the green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of dried jujube fruit and the...  相似文献   

10.

In this work, an environmentally friendly and cost-effective synthetic method of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) was successfully performed using aqueous extract of Phlogacanthus turgidus (PT) leaves. The biosynthesis of nanoparticles was optimized for reaction conditions including concentration of metallic ions, temperature, and time using the measurement of UV–Vis spectroscopy. The nanoparticles were well characterized by analytic techniques such as Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), and selected area electron diffraction (SAED). The morphological data showed that PT-AgNPs possessed the spherical shape with the size distribution ranging from 5 to 15 nm with a mean size of 10 nm while PT-AuNPs existed in the multiple shape with the size distribution ranging from 5 to 20 nm with a mean size of 12 nm. The antibacterial behavior showed that PT-AgNPs possessed high bioactivity against four bacterial strains including Bacillus subtilis, Staphylococcus aureus, Salmonella typhi, and Escherichia coli. Moreover, the catalytic activity of the biogenic nanoparticles was investigated for catalytic reduction of 2-nitrophenol, 3-nitrophenol, and rhodamine B. The kinetic data showed that the nanoparticles were excellent catalysts with potential applications for environmental treatment.

Graphical abstract
  相似文献   

11.
Biosynthesis of nanoparticles is under exploration is due to wide biomedical applications and research interest in nanotechnology. Bioreduction of silver nitrate (AgNO(3)) and chloroauric acid (HAuCl(4)) for the synthesis of silver and gold nanoparticles respectively with the plant extract, Mentha piperita (Lamiaceae). The plant extract is mixed with AgNO(3) and HAuCl(2), incubated and studied synthesis of nanoparticles using UV-Vis spectroscopy. The nanoparticles were characterized by FTIR, SEM equipped with EDS. The silver nanoparticles synthesized were generally found to be spherical in shape with 90 nm, whereas the synthesized gold nanoparticles were found to be 150 nm. The results showed that the leaf extract of menthol is very good bioreductant for the synthesis of silver and gold nanoparticles and synthesized nanoparticles active against clinically isolated human pathogens, Staphylococcus aureus and Escherichia coli.  相似文献   

12.
《Arabian Journal of Chemistry》2020,13(12):8662-8670
New and improved approaches are urgently needed to fight the increasing number of multi-drug resistant bacteria. The antibacterial effect of silver nanoparticles (AgNPs) prepared by standardized chemical and biological syntheses is compered here. Biological systems included extracts of Opuntia ficus-indica mucilage and extracellular growth broth of Aspergillus niger and Bacillus megaterium. The nanoparticles were characterized by infrared spectroscopy, IR, and transmission electron microscopy. All of the AgNPs shared characteristic IR peaks and had an average size of 20–60 nm. The AgNPs were mainly spherical regardless of synthetic path. The synthesis based on the extracellular broth of the fungus, due to the highest biomass and active compounds concentration, resulted in a high yield of nanoparticle formation. These AgNPs also exhibited the highest inhibition zone against Salmonella typhimurium and Staphylococcus aureus. The syntheses reported here have no significant influence on AgNPs physical characteristics, as compared to literature, but represent processes with shorter reaction time. Additionally, the fungal based nanoparticles have superior antibacterial characteristics.  相似文献   

13.
In this work, a novel single-stage process for in situ synthesis of Ag nanoparticles (NPs) using the layer-by-layer (LbL) technique is presented. The Ag NPs were formed into nanotextured coatings based on sequentially adsorbed poly(allylamine hydrochloride) (PAH) and SiO2 NPs. Such highly porous surfaces have been used in the fabrication of highly efficient ion release films for applications such as antibacterial coatings. In this approach, the amino groups of the PAH acted as reducing agent and made possible the in situ formation of the Ag NPs. This reduction reaction occurred during the LbL process as the coating was assembled, without any further step after the fabrication and stabilization of the multilayer film. Biamminesilver nitrate was used as the Ag+ ion source during the LbL process and it was successfully reduced to Ag NPs. All coatings were tested with gram-positive and gram-negative bacterial cultures of Escherichia coli, Staphylococcus aureus, and Lactobacillus delbrueckii showing an excellent antimicrobial behavior against these types of bacteria (more than 99.9% of killing efficiency in all cases).  相似文献   

14.
Green synthesis of silver nanoparticles (Ag NPs) has been achieved using oak fruit bark extract as a reducing, capping and stabilizing agent. The biosynthesized Ag NPs were characterized using various techniques. UV–visible spectrum of prepared silver colloidal solution showed absorption maximum at 433 nm. X‐ray diffraction and transmission electron microscopy analysis revealed that Ag NPs have a face‐centred cubic structure being spherical in shape with an average particle size of 20–25 nm. The toxicity of the Ag NPs was tested on bacterial species such as Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli by comparison based on diameter of inhibition zone in disc diffusion tests and minimum inhibitory concentration and minimum bactericidal concentration of NPs dispersed in liquid cultures. The antimicrobial activity of Ag NPs was greater towards Gram‐positive bacteria (S. aureus and B. subtilis) compared to Gram‐negative bacteria as determined using standard Kirby–Bauer disc diffusion assay and serial dilution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Silver nanoparticles were biosynthesized with the aid of a novel and eco-friendly biological material Torreya nucifera. Temperature and extract concentration were found to influence the size and shape of the biosynthesized silver nanoparticles. Morphological images of biosynthesized nanomaterials revealed that the particles are in spherical shape and size ranging between 10 and 125 nm. Crystalline nature of nanoparticles in face centered cubic (fcc) structure was ensured by diffraction pattern peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes. Characterization of the biosynthesized nanoparticles was performed by the X-ray diffraction and Fourier Transform Infrared spectroscopy analyses. FT-IR analysis indicates that nanoparticles are bound to proteins through amine groups of the aminoacid. Furthermore the biosynthesized nanoparticles were found to be highly effective against Salmonella typhimurium bacterium, which validates its potential applications as antibacterial agents in drinking water treatment and in food packagings.  相似文献   

16.
We report on an effective route to decorate titanium nanotube arrays (TiNT) with silver nanoparticles (AgNPs). In this method, surface-adsorbed antibody molecules serve as templates to bind silver ions by electrostatic interaction. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. This route also was successfuly applied to gold nanoparticles (starting from negatively charged metallic precursor ions). Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.
Figure
An effective protein-mediated route to decorate Ag nanoparticles (AgNPs) in TiO2 nanotube arrays (TiNT) is reported. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.  相似文献   

17.
Silver is known for its antimicrobial effects and silver nanoparticles are gaining their importance due to their antimicrobial activities. The aims of the current study were to use plant extract for the biosynthesis of silver nanoparticles and to evaluate their antibacterial and antioxidant activity in vitro. The results indicated that silver nanoparticles (AgNPs) can be synthesized in a simple method using Chenopodium murale leaf extract. The TEM analysis showed that the sizes of the synthesized AgNps ranged from 30 to 50 nm. The essential oil of C. murale leaf extract was formed mainly of α-Terpinene, (Z)-Ascaridole and cis-Ascaridole. The total phenolic compounds and total flavonides were higher in AgNPs-containing plant extract compared to the plant extract. AgNPs-containing leaf extract showed a higher antioxidant and antimicrobial activity compared to C. murale leaf extract alone or silver nitrate. It could be concluded that C. murale leaf extract can be used effectively in the production of potential antioxidant and antimicrobial AgNPs for commercial application.  相似文献   

18.
Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.  相似文献   

19.
Ma  Zhengxin  Liu  Jie  Shen  Guixian  Zheng  Xuejing  Pei  Ying  Tang  Keyong 《Cellulose (London, England)》2021,28(10):6287-6303
Cellulose - Synthesis of nanocomposites containing silver nanoparticles (AgNPs) has drawn growing interest owing to their antimicrobial activity and tuneable physicochemical properties. In this...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号