首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of peptide sulfinyl radical (RSO?) ions with a well-defined radical site at the cysteine side chain were formed at atmospheric pressure (AP), sampled into a mass spectrometer, and investigated via collision-induced dissociation (CID). The radical ion formation was based on AP reactions between oxidative radicals and peptide ions containing single inter-chain disulfide bond or free thiol group generated from nanoelectrospray ionization (nanoESI). The radical induced reactions allowed large flexibility in forming peptide radical ions independent of ion polarity (protonated or deprotonated) or charge state (singly or multiply charged). More than 20 peptide sulfinyl radical ions in either positive or negative ion mode were subjected to low energy collisional activation on a triple-quadrupole/linear ion trap mass spectrometer. The competition between radical- and charge-directed fragmentation pathways was largely affected by the presence of mobile protons. For peptide sulfinyl radical ions with reduced proton mobility (i.e., singly protonated, containing basic amino acid residues), loss of 62?Da (CH2SO), a radical-initiated dissociation channel, was dominant. For systems with mobile protons, this channel was suppressed, while charge-directed amide bond cleavages were preferred. The polarity of charge was found to significantly alter the radical-initiated dissociation channels, which might be related to the difference in stability of the product ions in different ion charge polarities.  相似文献   

2.
In this study, we have developed a tandem time-of-flight mass spectrometry (TOF/TOF) technique involving the use of a matrix-assisted laser desorption/ionization ion source that exhibits high precursor ion selectivity. An ion optical system with a 17 m spiral ion trajectory was used in the first time-of-flight mass spectrometer. High precursor ion selectivity was achieved by realizing a 15 m flight path, which is considerably longer than that of the conventional MALDI-TOF/TOF before the precursor ion selection by an ion gate; monoisotopic ions could be selected properly up to m/z 2500. Furthermore, the first time-of-flight mass spectrometer was composed of electrostatic sectors and could eliminate post-source decay (PSD) ions. Precursor ions with 20 keV kinetic energy were selected and injected into a collision cell, leading to the generation of fragment ions by high-energy collision-induced dissociation (HE-CID). The optimized second time-of-flight mass spectrometer included a post-acceleration region and an offset parabolic reflectron to record product ion spectra in the entire mass range. Our system could generate a simple HE-CID product ion spectrum because each fragment pathway could be observed as a single peak by the selection of monoisotopic ions of all precursor ions and HE-CID fragment pathways could be predominantly observed by the PSD ion elimination.  相似文献   

3.
In this report, we present a new approach for the determination of the disulfide bond connectivity in proteins using negative ionization mass spectrometry of nonreduced enzymatic digests. The mass spectrometric analysis in negative ion mode was optimized to allow in-line analysis coupled directly to the HPLC system used for the separation of the peptides resulting from enzymatic digestion. We determined the disulfide structure of a human immunoglobulin gamma 2 (IgG2) antibody containing 18 unique cysteine residues linked via 11 unique disulfide bonds. The efficiency of the gas-phase dissociation of disulfide-linked peptides using negative electrospray ionization was evaluated for an ion trap mass spectrometer and an orthogonal acceleration time-of-flight mass spectrometer. Both mass spectrometry techniques provided efficient in-source fragmentation for the identification of the disulfide-linked peptides of the antibody. Both instruments were limited in the number of disulfide bonds that could be dissociated. Seven of the 11 unique disulfide linkages have been determined, including the linkage of the light chain to the heavy chain. Only the disulfide connectivity of the hinge peptide H6H7H8H9 (C6C7VEC8PPC9PAPPVAGPSVFLFPPKPK) could not be determined (numbering the cysteine residues sequentially from the N-terminus and labeling the heavy chain cysteines "H" and the light chain cysteines "L"). However, we identified the dimer of peptide C6C7VEC8PPC9PAPPVAGPSVFLFPPKPK linked via four disulfide bonds based on the unique molecular weight of this dipeptide. The established linkages were H1 to H2, H10 to H11, H12 to H13, L1 to L2, L3 to L4, and L5 to H3H4. The intrachain linkages of the light chain (L1 to L2, L3 to L4), and heavy chain (H10 to H11, H12 to H13) domains were identical to the linkages found in IgG1 antibodies.  相似文献   

4.
Complex disulfide bond patterns in synaptosomal‐associated protein of 25 kD B (SNAP25B) are thought to regulate neurotransmitter release in response to oxidative stress. However, the steric feasibility of each possible disulfide pattern in SNAP25B has not been assessed. To assess the steric feasibility of hypothesized closely spaced complex disulfide patterning in SNAP25B and also the feasibility of identifying complex disulfide bond patterns with MS, we have developed a novel probabilistic analysis to unambiguously resolve complex double disulfide bond patterns by using an ion trap mass spectrometer. We analyzed fragmentation patterns of singly linked peptides to determine likely fragmentation events in an ion trap mass spectrometer and observed double and single backbone cleavage along with heterolytic cleavage of the disulfide bond. We modeled these same events in the doubly disulfide linked SNAP25B peptide and used a cumulative hypergeometric distribution with top–down scoring to both identify and differentiate these bonding patterns. Because of the presence of unique MS/MS peaks, two of the bonding patterns were directly identified. The third was assigned on the basis of full chromatographic separation and confirmed by modeling triple breakage fragments. In total, this work demonstrates the feasibility – and also limitations – of identification of complex intradisulfide patterns by using ion trap‐based collision‐induced dissociation‐based fragmentation methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
MS/MS is indispensable for the amino acid sequencing of peptides. However, its use is limited for peptides containing disulfide bonds. We have applied the reducing properties of 1,5-diaminonaphthalene (1,5-DAN) as a MALDI matrix to amino acid sequencing and disulfide bond mapping of human urotensin II possessing one disulfide bond, and human guanylin possessing two disulfide bonds. 1,5-DAN was used in the same manner as the usual MALDI matrices without any pre-treatment of the peptide, and MS/MS was performed using a matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometer (MALDI QIT TOFMS). The results demonstrated that MS/MS of the molecular ions reduced by 1,5-DAN provided a series of significant b-/y-product ions. All 11 amino acid residues of urotensin II were identified using 1,5-DAN, while only 5 out of 11 residues were identified using 2,5-dihydroxybenzoic acid (DHB); similarly 11 out of 15 amino acid residues of guanylin were identified using 1,5-DAN, while only three were identified using DHB. In addition, comparison of the theoretical and measured values of the mass differences between corresponding MS/MS product ions using 1,5-DAN and DHB narrowed down the possible disulfide bond arrangement candidates. Consequently, 1,5-DAN as a reductive matrix facilitates rapid amino acid sequencing and disulfide mapping for peptides containing disulfide bonds.  相似文献   

6.
Electrospray ionization provides a "treasure trove" of metal containing ions whose fundamental reactivity can be studied via collision induced dissociation and ion-molecule reactions using the multistage mass spectrometry capabilities of the quadrupole ion trap mass spectrometer. Examples of metal mediated chemistry relevant to catalysis, C-C bond coupling, bioinorganic and supramolecular chemistry are highlighted.  相似文献   

7.
Peptide and protein characterization by mass spectrometry (MS) relies on their dissociation in the gas phase into specific fragments whose mass values can be aligned as ‘mass ladders’ to provide sequence information and to localize possible posttranslational modifications. The most common dissociation method involves slow heating of even-electron (M+n H)n+ ions from electrospray ionization by energetic collisions with inert gas, and cleavage of amide backbone bonds. More recently, dissociation methods based on electron capture or transfer were found to provide far more extensive sequence coverage through unselective cleavage of backbone N–Cα bonds. As another important feature of electron capture dissociation (ECD) and electron transfer dissociation (ETD), their unique unimolecular radical ion chemistry generally preserves labile posttranslational modifications such as glycosylation and phosphorylation. Moreover, it was postulated that disulfide bond cleavage is preferred over backbone cleavage, and that capture of a single electron can break both a backbone and a disulfide bond, or even two disulfide bonds between two peptide chains. However, the proposal of preferential disulfide bond cleavage in ECD or ETD has recently been debated. The experimental data presented here reveal that the mechanism of protein disulfide bond cleavage is much more intricate than previously anticipated.  相似文献   

8.
The gas-phase fragmentation reactions of singly protonated aromatic amino acids, their simple peptides as well as simple models for intermolecular disulfide bonds have been examined using a commercially available hybrid linear ion trap-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Low-energy collision-induced dissociation (CID) reactions within the linear ion trap are compared with electron-induced dissociation (EID) reactions within the FT-ICR cell. Dramatic differences are observed between low-energy CID (which occurs via vibrational excitation) and EID. For example, the aromatic amino acids mainly fragment via competitive losses of NH(3) and (H(2)O+CO) under CID conditions, while side-chain benzyl cations are major fragment ions under EID conditions. EID also appears to be superior in cleaving the S-S and S-C bonds of models of peptides containing an intermolecular disulfide bond. Systematic studies involving fragmentation as a function of electron energy reveal that the fragmentation efficiency for EID occurs at high electron energy (more than 10 eV) compared with the low-electron energy (less than 0.2 eV) typically observed for electron capture dissociation fragmentation. Finally, owing to similarities between the types of fragment ions observed under EID conditions and those previously reported in ultraviolet photodissociation experiments and the electron-ionization mass spectra, we propose that EID results in fragmentation via electronic excitation and vibrational excitation. EID may find applications in analyzing singly charged molecular ions formed by matrix-assisted laser desorption ionization.  相似文献   

9.
The ability of a thiol‐containing molecule, thiosalicylic acid (TSA), to function as a reactive matrix for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry analysis of peptides has been investigated. Although TSA has reducing characteristics, the use of TSA did not cause a reduction‐induced MALDI in‐source decay, probably because of the weak interactions between the thiol group in TSA and the carboxyl oxygen in the peptide. In contrast, when peptides containing disulfide bonds were analyzed by MALDI with TSA as the matrix, the disulfide bond was partially cleaved owing to the reaction with TSA, producing TSA‐adducted peptides. The reaction between the disulfide bond and TSA was suggested to be occurred in solution. The comparison of the MALDI mass spectra obtained using conventional matrix and TSA allows us to count the number of disulfide bonds in the peptides. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Post-translational modifications (PTMs) of proteins are important in the activation, localization, and regulation of protein function in vivo. The usefulness of electron capture dissociation (ECD) and electron-transfer dissociation (ETD) in tandem mass spectrometry (MS/MS) using low-energy (LE) trap type mass spectrometer is associated with no loss of a labile PTM group regarding peptide and protein sequencing. The experimental results of high-energy (HE) collision induced dissociation (CID) using the Xe and Cs targets and LE-ETD were compared for doubly-phosphorylated peptides TGFLT(p)EY(p)VATR (1). Although HE-CID using the Xe target did not provide information on the amino acid sequence, HE-CID using the Cs target provided all the z-type ions without loss of the phosphate groups as a result of HE-ETD process, while LE-ETD using fluoranthene anion gave only z-type ions from z5 to z11. The difference in the results of HE-CID between the Xe and Cs targets demonstrated that HE-ETD process with the Cs target took place much more dominantly than collisional activation. The difference between HE-ETD using Cs targets and LE-ETD using the anion demonstrated that mass discrimination was much weaker in the high-energy process. HE-ETD was also applied to three other phosphopeptides YGGMHRQEX(p)VDC (2: X = S, 3: X = T, 4: X = Y). The HE-CID spectra of the doubly-protonated phosphopeptides (= [M + 2H]2+) of 2, 3, and 4 using the Cs target showed a very similar feature that the c-type ions from c7 to c11 and the z-type ions from z7 to z11 were formed via N-Cα bond cleavage without a loss of the phosphate group.  相似文献   

11.
A novel mass spectrometer with the capability of ion manipulation and enrichment was developed to perform gas‐phase ion/ion reactions followed by product ions accumulation. The development of this apparatus opens opportunities for more complex sequences of ion manipulations, thus offers the potential on extensive application involving ion/ion reaction. Here, cleavage of disulfide bond in peptide was demonstrated based upon this ion manipulation and enrichment mass spectrometer. Two typical peptides including S‐glutathionylated ARACAKA with an intermolecular disulfide bond, and oxytocin with an intramolecular disulfide bond were chosen as typical samples to demonstrate the ability of the apparatus. After ion/ion reaction between selected peptide cations and periodate ions (IO4?), two kinds of product ions (eg, [M + O + H]+ and [M + H + Na + IO4]+) were enriched with a number of accumulation events. Afterwards, the enriched ions were subjected to activation, and the disulfide bond cleavage was clearly observed from the tandem mass spectra. These results illustrate the potential of this apparatus for ion manipulation performing ion/ion reaction, and low abundance product ion enrichment.  相似文献   

12.
Multiply protonated ions of disulfide-intact and -reduced peptides were generated by electrospray ionization and studied by Fourier transform ion cyclotron resonance mass spectrometry. The effects of disulfide bonds on gas-phase deprotonation reactions and hydrogen/deuterium (H/D) exchange were investigated. Insight into conformations was gained from molecular dynamics calculations. For ions from three small peptides containing 9–14 amino acid residues, H/D exchange is more sensitive to changes in conformation than deprotonation. However, with both gas-phase reactions the more diffuse forms of the peptides (as determined by molecular modeling) react more readily. The effects of disulfide cleavage on the conformations and on the reactions were found to depend upon the sequence of the peptide. For [M + 3H]3+ of TGF-α (34–43), reduction of the disulfide linkage leads to a greatly extended structure and a dramatic increase in the rate and extent of H/D exchange. In contrast, [M + 2H]2+ of Arg8 -vasopressin becomes slightly more compact upon cleavage of the disulfide bond; these reduced ions are slower to react. For [M + 3H]3+ of somatostatin-14, reduction of the disulfide bond has little effect on conformation or gas-phase reactivity. Overall, these results indicate that there is no general rule on how cleavage of a disulfide bond will effect a peptide ion’s gas-phase reactivity.  相似文献   

13.
A sensitive, integrated top-down liquid chromatography/mass spectrometry (LC/MS) approach, suitable for the near complete characterization of specific proteins in complex protein mixtures, such as inclusion bodies of an E. coli lysate, has been successfully developed using a hybrid linear ion trap/Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. In particular, human growth hormone (hGH) (200 fmol) was analyzed with high sequence coverage (>95%), including the sites of disulfide linkages. The high mass accuracy and resolution of the FTICR mass spectrometer was used to reveal high charge state ions of hGH (22 kDa). The highly charged intact protein ions (such as the 17+ species) were captured and fragmented in the linear ion trap cell. The fragment ions from MS/MS spectra were then successfully analyzed in the FTICR cell in an on-line LC/MS run. Peptide fragments from the N-terminal and C-terminal regions, as well as large interior fragments, were captured and identified. The results allowed the unambiguous assignment of disulfide bonds Cys53-Cys165 and Cys182-Cys189, indicative of proper folding of hGH. The disulfide bond assignments were also confirmed by analysis of the tryptic digest of a sample of hGH purified from inclusion bodies. On-line LC/MS with the linear ion trap/FTICR yields high mass accuracy in both the MS and MS/MS modes (within 2 ppm with external calibration). The approach should prove useful in biotechnology applications to characterize correctly folded proteins, both in the early protein expression and the later processed stages, using only a single automated on-line LC/MS top-down method.  相似文献   

14.
Diquaternary ammonium gemini surfactants have emerged as effective gene delivery vectors. A novel series of 11 peptide‐modified compounds was synthesized, showing promising results in delivering genetic materials. The purpose of this work is to elucidate the tandem mass spectrometric (MS/MS) dissociation behavior of these novel molecules establishing a generalized MS/MS fingerprint. Exact mass measurements were achieved using a hybrid quadrupole orthogonal time‐of‐flight mass spectrometer, and a multi‐stage MS/MS analysis was conducted using a triple quadrupole‐linear ion trap mass spectrometer. Both instruments were operated in the positive ionization mode and are equipped with electrospray ionization. Abundant triply charged [M+H]3+ species were observed in the single‐stage analysis of all the evaluated compounds with mass accuracies of less than 8 ppm in mass error. MS/MS analysis showed that the evaluated gemini surfactants exhibited peptide‐related dissociation characteristics because of the presence of amino acids within the compounds' spacer region. In particular, diagnostic product ions were originated from the neutral loss of ammonia from the amino acids' side chain resulting in the formation of pipecolic acid at the N‐terminus part of the gemini surfactants. In addition, a charge‐directed amide bond cleavage was initiated by the amino acids' side chain producing a protonated α‐amino‐ε‐caprolactam ion and its complimentary C‐terminus ion that contains quaternary amines. MS/MS and MS3 analysis revealed common fragmentation behavior among all tested compounds, resulting in the production of a universal MS/MS fragmentation pathway. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
A combination of cDNA cloning and detailed mass spectrometric analyses was employed to identify novel conotoxins from Conus victoriae. Eleven conotoxin sequences were determined using molecular methods: one belonging to the A superfamily (Vc1.1), six belonging to the O superfamily (Vc6.1-Vc6.6) and four members of the T superfamily (Vc5.1-Vc5.4). In order to verify the sequences and identify the post-translational modifications (excluding the disulfide connectivity) of three Conus victoriae conotoxins, vc1a, vc5a and vc6a, deduced from sequences Vc1.1, Vc5.1, and Vc6.1, respectively, liquid chromatography/electrospray ionization ion trap mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanospray ionization ion trap mass spectrometry with collisionally induced dissociation were performed on reduced and alkylated venom fractions. We report that vc1a, the native form of alpha-conotoxin Vc1.1 (an unmodified 16 amino acid residue peptide that has notable pain-relieving capabilities), includes a hydroxyproline and a gamma-carboxyglutamate residue. Conotoxin vc5a is a 10-residue peptide with two disulfide bonds and a hydroxyproline and vc6a is a 25 amino acid peptide with three disulfide bonds.  相似文献   

16.
Ceftiofur is an important veterinary beta-lactam antibiotic whose bioactive metabolite, desfuroylceftiofur, has a free thiol group. Desfuroylceftiofur (DFC) was reacted with two peptides, [Arg8]-vasopressin and reduced glutathione, both of which have cysteine residues to form disulfide-linked peptide/antibiotic complexes. The products of the reaction, [vasopressin + (DFC-H) + (DFC-H) + H]+, [(vasopressin+H) + (DFC-H) + H]+ and [(glutathione-H) + (DFC-H) + H]+, were analyzed using collision-activated dissociation (CAD) with a quadrupole ion trap tandem mass spectrometer. MS/MS of [vasopressin + (DFC-H) + (DFC-H) + H]+ resulted in facile dissociative loss of one and two covalently bound DFC moieties. Loss of one DFC resulted from either homolytic or heterolytic dissociation of the peptide/antibiotic disulfide bond with equal or unequal partitioning of the two sulfur atoms between the fragment ion and neutral loss. Hydrogen migration preceded heterolytic dissociation. Loss of two DFC moieties from [vasopressin + (DFC-H) + (DFC-H) + H]+ appears to result from collision-activated intramolecular disulfide bond rearrangement (IDBR) to produce cyclic [vasopressin + H]+ (at m/z 1084) as well as other cyclic fragment ions at m/z 1084 +/- 32 and +64. The cyclic structure of these ions could only be inferred as MS/MS may result in rearrangement to non-cyclic structures prior to dissociative loss. IDBR was also detected from MS(3) experiments of [vasopressin + (DFC-H) + (DFC-H) + H]+ fragment ions. MS/MS of [(glutathione-H) + (DFC-H) + H]+ resulted in cleavage of the peptide backbone with retention of the DFC moiety as well as heterolytic cleavage of the peptide/antibiotic disulfide bond to produce the fragment ion: [(DFC-2H) + H]+. These results demonstrate the facile dissociative loss by CAD of DFC moieties covalently attached to peptides through disulfide bonds. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

17.
The dissociation chemistry of somatostatin‐14 was examined using various tandem mass spectrometry techniques including low‐energy beam‐type and ion trap collision‐induced dissociation (CID) of protonated and deprotonated forms of the peptide, CID of peptide‐gold complexes, and electron transfer dissociation (ETD) of cations. Most of the sequence of somatostatin‐14 is present within a loop defined by the disulfide linkage between Cys‐3 and Cys‐14. The generation of readily interpretable sequence‐related ions from within the loop requires the cleavage of at least one of the bonds of the disulfide linkage and the cleavage of one polypeptide backbone bond. CID of the protonated forms of somatostatin did not appear to give rise to an appreciable degree of dissociation of the disulfide linkage. Sequential fragmentation via multiple alternative pathways tended to generate very complex spectra. CID of the anions proceeded through CH2? S cleavages extensively but relatively few structurally diagnostic ions were generated. The incorporation of Au(I) into the molecule via ion/ion reactions followed by CID gave rise to many structurally relevant dissociation products, particularly for the [M+Au+H]2+ species. The products were generated by a combination of S? S bond cleavage and amide bond cleavage. ETD of the [M+3H]3+ ion generated rich sequence information, as did CID of the electron transfer products that did not fragment directly upon electron transfer. The electron transfer results suggest that both the S? S bond and an N? Cα bond can be cleaved following a single electron transfer reaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We report a new method for identifying disulfide linkages in peptides using mass spectrometry. This is accomplished by collisional activation of singly charged cationic alkali and alkaline earth metal complexes, which results in the highly selective elimination of hydrogen disulfide (H2S2). Complexes of peptides possessing disulfide bonds with sodium and alkaline earth metal are generated using electrospray ionization (ESI). Isolation followed by collision induced dissociation (CID) of singly charged peptide complexes results in selective elimination of H2S2 to leave newly formed dehydroalanine residues in the peptide. Further activation of the product yields sequence information in the region previously short circuited by the disulfide bond. For example, singly charged magnesium and calcium ion bound complexes of [Lys8]-vasopressin exhibit selective elimination of H2S2 via low-energy CID. Further isolation of the product followed by CID yields major b- and z-type fragments revealing the peptide sequence in the region between the newly formed dehydroalanine residues. Numerous model peptides provide mechanistic details for the selective elimination of H2S2. The process is initiated starting with a metal stabilized enolate anion at Cys, followed by cleavage of the S-C bond. An examination of the peptic digest of insulin provides an example of the application of the selective elimination of H2S2 for the identification of peptides with disulfide linkages. The energetics and mechanisms of H2S2 elimination from model compounds are investigated using density functional theory (DFT) calculations.  相似文献   

19.
The ring opening of 1,3-di-tert-butylaziridinone by tert-butylamine and aniline was investigated by using electrospray ionization and collision-induced dissociation in an ion trap mass spectrometer in conjunction with (15)N labeling of the two amine nucleophiles. Using the MS(n) capabilities of the ion trap instrument, we were able to monitor the retention of the (15)N label through successive fragmentation steps. Both amines exhibited a remarkable degree of selectivity in that they both cleaved exclusively the 1,3-bond (the alkyl-nitrogen bond). This result is in contrast to that obtained previously with methylamine, which cleaved just the opposite bond, namely, the 1,2-bond (the acyl-nitrogen bond). These contrasting results could not have been predicted by previously published guidelines.  相似文献   

20.
Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号