共查询到20条相似文献,搜索用时 0 毫秒
1.
MS/MS is indispensable for the amino acid sequencing of peptides. However, its use is limited for peptides containing disulfide bonds. We have applied the reducing properties of 1,5-diaminonaphthalene (1,5-DAN) as a MALDI matrix to amino acid sequencing and disulfide bond mapping of human urotensin II possessing one disulfide bond, and human guanylin possessing two disulfide bonds. 1,5-DAN was used in the same manner as the usual MALDI matrices without any pre-treatment of the peptide, and MS/MS was performed using a matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometer (MALDI QIT TOFMS). The results demonstrated that MS/MS of the molecular ions reduced by 1,5-DAN provided a series of significant b-/y-product ions. All 11 amino acid residues of urotensin II were identified using 1,5-DAN, while only 5 out of 11 residues were identified using 2,5-dihydroxybenzoic acid (DHB); similarly 11 out of 15 amino acid residues of guanylin were identified using 1,5-DAN, while only three were identified using DHB. In addition, comparison of the theoretical and measured values of the mass differences between corresponding MS/MS product ions using 1,5-DAN and DHB narrowed down the possible disulfide bond arrangement candidates. Consequently, 1,5-DAN as a reductive matrix facilitates rapid amino acid sequencing and disulfide mapping for peptides containing disulfide bonds. 相似文献
2.
Randall E. Scarberry Zhen Zhang Daniel R. Knapp 《Journal of the American Society for Mass Spectrometry》1995,6(10):947-961
This paper reports a newly developed technique that uses artificial neural networks to aid in the automated interpretation of peptide sequence from high-energy collision-induced dissociation (CID) tandem mass spectra of peptides. Two artificial neural networks classify fragment ions before the commencement of an iterative sequencing algorithm. The first neural network provides an estimation of whether fragment ions belong to 1 of 11 specific categories, whereas the second network attempts to determine to which category each ion belongs. Based upon numerical results from the two networks, the program generates an idealized spectrum that contains only a single ion type. From this simplified spectrum, the program’s sequencing module, which incorporates a small rule base of fragmentation knowledge, directly generates sequences in a stepwise fashion through a high-speed iterative process. The results with this prototype algorithm, in which the neural networks were trained on a set of reference spectra, suggest that this method is a viable approach to rapid computer interpretation of peptide CID spectra. 相似文献
3.
Wade M. Hines Arnold M. Falick Alma L. Burlingame Bradford W. Gibson 《Journal of the American Society for Mass Spectrometry》1992,3(4):326-336
A new strategy is reported for extracting complete and partial sequence information from collision-induced dissociation (CID) spectra of peptides, CID spectra are obtained from high energy CID of peptide molecular ions on a four-sector tandem mass spectrometer with an electro-optically coupled microchannel array detector, A peak detection routine reduces the spectrum to a list of peak masses and peak heights, which is then used for sequencing, The sequencing algorithm was designed to use spectral data to generate sequence fits directly rather than to use data to test the fit of series of sequence guesses. The peptide sequencing algorithm uses a pattern based on the polymeric nature of peptides to classify spectral peaks into sets that are related in a sequence-independent manner, It then establishes sequence relationships among these sets, Peak detection from raw data takes 10–20 s, with sequence generation requiring an additional 10–60 s on a Sun 3/60 workstation, The program is written in the C language to run on a Unix platform. The principal advantages of our method are in the speed of analysis and the potential for identifying modified or rare amino acids. The algorithm was designed to permit real-time sequencing but awaits hardware modifications to allow real-time access to CID spectra. 相似文献
4.
The fragmentation of peptide acetals and peptide diols, corresponding to the hydrated form of the peptide aldehyde, is dominated by the successive losses of two molecules of MeOH and water, respectively. Using model peptides, the fragmentation mechanism, with respect to the loss of methanol and water, was elucidated. The first loss was certainly charge-directed whereas the second probably occurred via the nucleophilic attack of the nitrogen of an amine on the C-terminal carbon leading to a cyclic ion. 相似文献
5.
Denekamp C Van Den Heuvel H Voinov VG Claeys M Seto C Grossert JS Waddell DS Curtis JM Boyd RK 《Rapid communications in mass spectrometry : RCM》2000,14(12):1035-1043
In this study we report on high-energy, collision-induced dissociation processes leading to charge-remote fragmentations, using three alkyl cations, namely n-hexadecylpyridinium, n-hexadecyltriphenylphosphonium and n-hexadecyltriethylammonium, each with and without (2)H(2)-labelling at the C(9) position of the hexadecyl chain. The characteristic patterns corresponding to the formal elimination of alkane elements were observed, and the (2)H(2)-labelling at C(9) clearly affected only one charge-remote fragment ion of the homologous series. However, in addition to the expected fragment ion containing only one deuterium atom, a significant ion retaining two deuterium atoms was observed. MS/MS/MS experiments demonstrated clearly that the latter ion showed partial deuteration around the charge site, the level of deuteration depending on the structure of the original precursor cation. These results can be interpreted in terms of two novel, distinct mechanisms, one of which involves an excited state in an aromatic ring. Mixed-site fragmentation (MSF) ions were also observed from the phosphonium and ammonium ion precursors. We believe that the observation of the MSF process occurring at an sp(2)-hybridized center in the phosphonium series has not been reported previously. It thus becomes apparent that high-energy collisions leading to charge-remote reactions in fact lead to a broad range of pathways. Copyright 2000 John Wiley & Sons, Ltd. 相似文献
6.
Macht M Asperger A Deininger SO 《Rapid communications in mass spectrometry : RCM》2004,18(18):2093-2105
The fragmentation of peptides under laser-induced dissociation (LID) as well as high-energy collision-induced dissociation (CID) conditions has been investigated. The effect of the different fragmentation mechanisms on the formation of specific fragment ion types and the usability of the resulting spectra, e.g. for high-throughput protein identification, has been evaluated. Also, basic investigations on the influence of the matrix, as well as laser fluence, on the fragment ion formation and the consequences in the spectral appearance are discussed. The preconditions for obtaining 'pure' CID spectra on matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) instruments are evaluated and discussed as well as the differences between LID and CID in the resulting fragment ion types. While containing a wealth of information due to additional fragment ions in comparison with LID, CID spectra are significantly more complex than LID spectra and, due to different fragmentation patterns, the CID spectra are of limited use for protein identification, even under optimized parameter settings, due to significantly lower scores for the individual spectra. Conditions for optimal results regarding protein identification using MALDI-TOF/TOF instruments have been evaluated. For database searches using tandem mass spectrometric data, the use of LID as fragmentation technique in combination with parameter settings supporting the use of internal fragment ions turned out to yield the optimal results. 相似文献
7.
John R. Yates Jimmy K. Eng Karl R. Clauser Alma L. Burlingame 《Journal of the American Society for Mass Spectrometry》1996,7(11):1089-1098
We have broadened the utility of the SEQUEST computer algorithms to permit correlation of uninterpreted high-energy collision-induced dissociation spectra of peptides with all sequences in a database. SEQUEST now allows for the additional fragment ion types observed under high-energy conditions. We analyzed spectra from peptides isolated following trypsin digestion of 13 proteins. SEQUEST ranked the correct sequence first for 90% (18/20) of the spectra in searches of the OWL database, without constraint by enzyme cleavage specificity or species of origin. All false-positives were flagged by the scoring system. SEQUEST searches databases for sequences that correspond to the precursor ion mass ±0.5 u. Preliminary ranking of the top 500 candidates is done by calculation of fragment ion masses for each sequence, and comparison to the measured ion masses on the basis of ion series continuity, summed ion intensity, and immonium ion presence. Final ranking is done by construction of model spectra for the 500 candidates and constructing/performing of a cross-correlation analysis with the actual spectrum. Given the need to relate mounting genome sequence information with corresponding suites of proteins that comprise the cellular molecular machinery, tandem mass spectrometry appears destined to play the leading role in accelerating protein identification on the large scale required. 相似文献
8.
The efficiency of the in-source collision-induced dissociation (in-source CID) technique for the structural characterization of microcystins (MCYSTs) was evaluated. Microcystins that did not contain arginine underwent facile fragmentation to produce characteristic product ions at relatively low cone voltage and could be fully characterized based on their mass spectra. On the other hand, cyclic peptides possessing arginine residues, such as MCYST-RR, -LR, -YR and nodularin, were considerably more stable under in-source CID conditions and required higher cone voltage to induce fragmentation. This behaviour is explained in terms of the mobile proton model for peptide fragmentation that can be used as an indication for the presence of arginine when unknown microcystins are analyzed. In-source CID was applied to the characterization of microcystins released into water from a Microcystis aeruginosa culture (UTCC299) (UTCC: University of Toronto Culture Collection of Algae and Cyanobacteria). Six microcystins were detected in extracts from UTCC299: I, [D-Asp(3)]MCYST-LR; II, MCYST-LR; III, isomer of MCYST-LR; IV, isomer of methyl MCYST-LR; V, [D-Asp(3), Glu(OCH(3))(6)]MCYST-LR; and VI, [D-Glu(OCH(3))(6)]MCYST-LR. In-source CID provided mass spectral patterns similar to those obtained by CID in the collision cell of the mass spectrometer but was more sensitive for the analysis of microcystins. 相似文献
9.
Six cerebrosides were isolated from the eggs of the starfish Asterias amurensis using solvent extraction, silica gel column chromatography, and reversed‐phase high‐performance liquid chromatography. This study demonstrated that the structures of cerebrosides could be completely characterized, based on their sodium‐adducted molecules, using fast atom bombardment (FAB) tandem mass spectrometry. The high‐energy collision‐induced dissociation of the sodium‐adducted molecule, [M + Na]+, of each cerebroside molecular species generated abundant ions, providing information on the compositions of the 2‐hydroxy fatty acids and long‐chain sphingoid bases, as well as the sugar moiety polar head group. Each homologous ion series along the fatty acid and aliphatic chain of the sphingoid base was useful for locating the double‐bond positions of both chains and the methyl branching position of the long‐chain base. The N‐fatty acyl portions were primarily long‐chain saturated or monoenoic acids (C16 to C24) with an α‐hydroxy group. The sphingoid long‐chain base portions were aliphatic chains (C18 or C22) with two or three degrees of unsaturation and with or without methyl branching. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
10.
A c1 ion was observed with significant yield in the tandem mass (MS/MS) spectra of peptide ions containing glutamine as the second amino acid residue from the N-terminus. The c1 fragment was generated independently of the N-terminal residue of the peptide, but its abundance was strongly dependent on the side-chain identity. This ion is not a common fragmentation product in low-energy collision-induced dissociation of peptide ions, but it assists in identification of the first two amino acid residues, often difficult due to a low or absent signal from the heaviest y ion. A consecutive fragmentation mechanism is proposed, involving a b2 ion with a six-membered ring as an intermediate, to explain the exceptional stability of the c1 fragment ion. The utility of this information is discussed, especially in de novo sequencing of peptide ions. 相似文献
11.
A. M. Falick W. M. Hines K. F. Medzihradszky M. A. Baldwin B. W. Gibson 《Journal of the American Society for Mass Spectrometry》1993,4(11):882-893
High-energy collision-induced dissociation (CID) mass spectrometry provides a rapid and sensitive means for determining the primary sequence of peptides. The low-mass region (below mass 300) of a large number of tandem CID spectra of peptides has been analyzed. This mass region contains several types of informative fragment ions, including dipeptide ions, immonium ions, and other related ions. Useful low-mass ions are also present in negative-ion CID spectra. Immonium ions (general structure [H2N=CH-R]+, where R is the amino acid side chain) and related ions characteristic of specific amino acid residues give information as to the presence or absence of these residues in the peptide being analyzed. Tables of observed immonium and reiated ions for the 20 standard amino acids and for a number of modified amino acids are presented. A database consisting of 228 high-energy CID spectra of peptides has been established, and the frequency of occurrence of various ions indicative of specific ammo acid residues has been determined. Two model computer-aided schemes for analysis of the ammo-acid content of unknown peptides have been developed and tested against the database. 相似文献
12.
Fragmentation of intra-peptide and inter-peptide disulfide bonds of proteolytic peptides by nanoESI collision-induced dissociation 总被引:1,自引:0,他引:1
Mormann M Eble J Schwöppe C Mesters RM Berdel WE Peter-Katalinić J Pohlentz G 《Analytical and bioanalytical chemistry》2008,392(5):831-838
Characterisation and identification of disulfide bridges is an important aspect of structural elucidation of proteins. Covalent
cysteine-cysteine contacts within the protein give rise to stabilisation of the native tertiary structure of the molecules.
Bottom-up identification and sequencing of proteins by mass spectrometry most frequently involves reductive cleavage and alkylation
of disulfide links followed by enzymatic digestion. However, when using this approach, information on cysteine-cysteine contacts
within the protein is lost. Mass spectrometric characterisation of peptides containing intra-chain disulfides is a challenging
analytical task, because peptide bonds within the disulfide loop are believed to be resistant to fragmentation. In this contribution
we show recent results on the fragmentation of intra and inter-peptide disulfide bonds of proteolytic peptides by nano electrospray
ionisation collision-induced dissociation (nanoESI CID). Disulfide bridge-containing peptides obtained from proteolytic digests
were submitted to low-energy nanoESI CID using a quadrupole time-of-flight (Q-TOF) instrument as a mass analyser. Fragmentation
of the gaseous peptide ions gave rise to a set of b and y-type fragment ions which enabled derivation of the sequence of the
amino acids located outside the disulfide loop. Surprisingly, careful examination of the fragment-ion spectra of peptide ions
comprising an intramolecular disulfide bridge revealed the presence of low-abundance fragment ions formed by the cleavage
of peptide bonds within the disulfide loop. These fragmentations are preceded by proton-induced asymmetric cleavage of the
disulfide bridge giving rise to a modified cysteine containing a disulfohydryl substituent and a dehydroalanine residue on
the C-S cleavage site. 相似文献
13.
Jef Rozenski Isabelle Samson Gerard Janssen Roger Busson Arthur Van Aerschot Piet Herdewijn 《Journal of mass spectrometry : JMS》1994,29(11):654-658
Side-reactions often occur during peptide synthesis resulting in modified amino acid moieties. To identify these residues, liquid secondary ion/collision-induced dissociation mass spectra were recorded. The main fragments are generated by cleavage of the peptide bond. To facilitate interpretation of the spectra and assignment of the structure, a simple, but flexible and efficient, computer program is presented. The program allows the verification of the correct structure of the synthesized peptides and the deduction of the type of side-products formed, such as alkylation of tryptophan residues. 相似文献
14.
Srikanth R Wilson J Bridgewater JD Numbers JR Lim J Olbris MR Kettani A Vachet RW 《Journal of the American Society for Mass Spectrometry》2007,18(8):1499-1506
Oxidative modifications to the side chains of sulfur-containing amino acids often limit the number of product ions formed during collision-induced dissociation (CID) and thus make it difficult to obtain sequence information for oxidized peptides. In this work, we demonstrate that electron-transfer dissociation (ETD) can be used to improve the sequence information obtained from peptides with oxidized cysteine and methionine residues. In contrast to CID, ETD is found to be much less sensitive to the side-chain chemistry, enabling extensive sequence information to be obtained in cases where CID fails to provide this information. These results indicate that ETD is a valuable technique for studying oxidatively modified peptides and proteins. In addition, we report a unique and very abundant product ion that is formed in the CID spectra of peptides having N-terminal cysteine sulfinic acid residues. The mechanism for this unique dissociation pathway involves a six-membered cyclic intermediate and leads to the facile loss of NH(3) and SO(2), which corresponds to a mass loss of 81 Da. While the facile nature of this dissociation pathway limits the sequence information present in CID spectra of peptides with N-terminal cysteine sulfinic acid residues, extensive sequence information for these peptides can be obtained with ETD. 相似文献
15.
Wolf D. Lehmann 《Journal of the American Society for Mass Spectrometry》1998,9(6):606-611
By using nanoelectrospray ionization and a triple quadrupole analyzer, simplified fragment ion spectra of peptides have been recorded by combining skimmer collision-induced dissociation with precursor ion scanning or neutral loss scanning. These pseudo-MS3 scan modes are characterized by two-stage collision-induced dissociation and have been termed sCID/precursor and sCID/neutral loss scan, respectively. By these scan modes, peptide fragment ion spectra can be generated that predominantly show signals of a single fragment ion series, such as the B or Y″ series. Skimmer collision-induced dissociation combined with scanning for neutral loss of 28 generates spectra showing B ions, whereas combination with precursor ion scanning for the Y″1 ion results in spectra showing Y″ ions for tryptic peptides (Y″1=m/z 147 for C-terminal lysine, Y″1=m/z 175 for C-terminal arginine). Sequence information including the direction of the sequence is easily extracted from the simplified fragment ion spectra generated by two-stage collision-induced dissociation, because the scan mode defines the type of fragments observed. The analytical results reported are similar to those that have been achieved in MS3 experiments using a hybrid BEQQ or a pentaquadrupole mass spectrometer (Schey, K. L.; Schwartz, J. C.; Cooks, R. G. Rapid Commun. Mass Spectrom. 1989, 3, 305–309). The pseudo-MS3 technique used in this study has some limitations with respect to sample purity, because there is no step of mass selection before the first stage of collisional activation; however, it has the advantage that a standard triple quadrupole instrumentation can be used. 相似文献
16.
Molecular tweezers 1b having two alkyl thiol chains were prepared. Intramolecular cyclization of the thiols under oxidative conditions afforded tweezers 2b containing a disulfide bond. X-ray crystal analysis and temperature dependent 1H NMR spectra analysis revealed that the structure of 1b has a stepped anti arrangement of the three aromatic rings, although that of 2b adopted a cleft conformation because of the intramolecular interaction between the alkyl chain and the terminal naphthalene rings. The thiol-disulfide redox reaction proceeded smoothly and reversibly to control the conformation of the tweezers. 相似文献
17.
Buré C Boujard O Bertrand M Lange C Delmas AF 《European journal of mass spectrometry (Chichester, England)》2005,11(1):31-34
Five peptide thioesters of increasing length were fragmented under two processes, in-source and in- collision cell fragmentation, using an electrospray source coupled to a triple quadrupole. Comparison of their fragmentations was made in regard to the length. The two fragmentation conditions show that the peptide length has no influence on structural information and that the fragmentation efficiency is higher for the smallest peptides than for the longest. The particularity of these peptide thioesters consists on the neutral loss of ethanethiol. The absence of the a3 fragment ion and the presence of the (a3-17) ion on the CID mass spectra are noted. 相似文献
18.
Analysis of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (anandamide) via alkali or alkaline earth metal-adduct high-energy collision-induced dissociation (CID) in fast-atom bombardment (FAB) ionization-mass spectrometry (MS) is described. The CID-MS/MS of the [2-AG+Li](+) or [2-AG+Na](+) ion undergoes charge-remote fragmentation (CRF), which is useful for the determination of the double-bond positions in the hydrocarbon chain, while the CID-MS/MS of the [2-AG-H+Cat](+) (Cat = Mg(2+), Ca(2+), Ba(2+)) ion provides an abundant fragment ion of the cationized arachidonic acid species, which is derived from cleaving the ester bond via a McLafferty-type rearrangement in addition to structurally informative CRF ions in small amounts. On the other hand, the CID-MS/MS spectra of anandamide cationized with both alkali metal (Li(+) or Na(+)) and alkaline earth metal (Mg(2+), Ca(2+), or Ba(2+)) show CRF patterns: the spectra obtained in lithium or sodium adduct are more clearly visible than those in magnesium, calcium, or barium adduct. The McLafferty rearrangement is not observed with metal-adduct anandamide. The characteristics in each mass spectrum are useful for the detection of these endogenous ligands. m-Nitrobenzyl alcohol (m-NBA) is the most suitable matrix. A lithium-adduct [2-AG+Li](+) or [anandamide+Li](+) ion is observed to be the most abundant in each mass spectrum, since the affinity of lithium for m-NBA is lower than that for other matrices examined. 相似文献
19.
20.
Andreas Bertsch Andreas Leinenbach Anton Pervukhin Markus Lubeck Ralf Hartmer Carsten Baessmann Yasser Abbas Elnakady Rolf Müller Sebastian Böcker Christian G. Huber Oliver Kohlbacher 《Electrophoresis》2009,30(21):3736-3747
De novo sequencing of peptides using tandem MS is difficult due to missing fragment ions in the spectra commonly obtained after CID of peptide precursor ions. Complementing CID spectra with spectra obtained in an ion‐trap mass spectrometer upon electron transfer dissociation (ETD) significantly increases the sequence coverage with diagnostic ions. In the de novo sequencing algorithm CompNovo presented here, a divide‐and‐conquer approach was combined with an efficient mass decomposition algorithm to exploit the complementary information contained in CID and ETD spectra. After optimizing the parameters for the algorithm on a well‐defined training data set obtained for peptides from nine known proteins, the CompNovo algorithm was applied to the de novo sequencing of peptides derived from a whole protein extract of Sorangium cellulosum bacteria. To 2406 pairs of CID and ETD spectra contained in this data set, 675 fully correct sequences were assigned, which represent a success rate of 28.1%. It is shown that the CompNovo algorithm yields significantly improved sequencing accuracy as compared with published approaches using only CID spectra or combined CID and ETD spectra. 相似文献