首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we shall present the concept of a uniquely n-colorable graph, and then introduce a class of graphs which we shall call 6-clique rings. We shall show that 6-clique rings are useful in generating some classes of uniquely 3-colorable graphs. Moreover, we shall demonstrate how the techniques used in producing uniquely 3-colorable graphs from 6-clique rings can be extended to allow the production of other classes of uniquely 3-colorable graphs as well as the production of uniquely n-colorable graphs, where n>3.  相似文献   

2.
A graphG isk-critical if it has chromatic numberk, but every proper subgraph of it is (k?1)-colorable. This paper is devoted to investigating the following question: for givenk andn, what is the minimal number of edges in ak-critical graph onn vertices, with possibly some additional restrictions imposed? Our main result is that for everyk≥4 andn>k this number is at least $\left( {\frac{{k - 1}}{2} + \frac{{k - 3}}{{2(k^2 - 2k - 1)}}} \right)n$ , thus improving a result of Gallai from 1963. We discuss also the upper bounds on the minimal number of edges ink-critical graphs and provide some constructions of sparsek-critical graphs. A few applications of the results to Ramsey-type problems and problems about random graphs are described.  相似文献   

3.
For simple graphs, we investigate and seek to characterize the properties first-order definable by the induced subgraph relation. Let \({\mathcal{P}\mathcal{G}}\) denote the set of finite isomorphism types of simple graphs ordered by the induced subgraph relation. We prove this poset has only one non-identity automorphism co, and for each finite isomorphism type G, the set {G, G co } is definable. Furthermore, we show first-order definability in \({\mathcal{P}\mathcal{G}}\) captures, up to isomorphism, full second-order satisfiability among finite simple graphs. These results can be utilized to explore first-order definability in the closely associated lattice of universal classes. We show that for simple graphs, the lattice of universal classes has only one non-trivial automorphism, the set of finitely generated and finitely axiomatizable universal classes are separately definable, and each such universal subclass is definable up to the unique non-trivial automorphism.  相似文献   

4.
It is known that planar graphs without cycles of length from 4 to 7 are 3-colorable (Borodin et al., 2005) [13] and that planar graphs in which no triangles have common edges with cycles of length from 4 to 9 are 3-colorable (Borodin et al., 2006) [11]. We give a common extension of these results by proving that every planar graph in which no triangles have common edges with k-cycles, where k∈{4,5,7} (or, which is equivalent, with cycles of length 3, 5 and 7), is 3-colorable.  相似文献   

5.
We describe a simple and efficient heuristic algorithm for the graph coloring problem and show that for all k ≥ 1, it finds an optimal coloring for almost all k-colorable graphs. We also show that an algorithm proposed by Brélaz and justified on experimental grounds optimally colors almost all k-colorable graphs. Efficient implementations of both algorithms are given. The first one runs in O(n + m log k) time where n is the number of vertices and m the number of edges. The new implementation of Brélaz's algorithm runs in O(m log n) time. We observe that the popular greedy heuristic works poorly on k-colorable graphs.  相似文献   

6.
Orderly algorithms for the generation of exhaustive lists of nonisomorphic graphs are discussed. The existence of orderly methods to generate the graphs with a given subgraph and without a given subgraph is established. This method can be used to list all the nonisomorphic subgraphs of a given graph, as well as to produce catalogs of Hamiltonian graphs, pancyclic graphs, degree-constrained graphs, and other classes. A generalization of this method is given that can be used to generate lists of graphs with given girth, planar graphs, k-colorable graphs, and k-connected graphs, for example. Finally, these observations are employed to generate restricted classes of digraphs, notably acyclic digraphs and poset digraphs. The generation of poset digraphs is shown to supply a practical orderly method for producing a catalog of lattices. Similar observations concerning vertex addition generation methods allow one to improve on existing methods for the generation of catalog of interval and circle graphs.  相似文献   

7.
We call a graph (m, k)-colorable if its vertices can be colored with m colors in such a way that each vertex is adjacent to at most k vertices of the same color as itself. For the class of planar graphs, and the class of outerplanar graphs, we determine all pairs (m, k) such that every graph in the class is (m, k)-colorable. We include an elementary proof (not assuming the truth of the four-color theorem) that every planar graph is (4, 1)-colorable. Finally, we prove that, for each compact surface S, there is an integer k = k(S) such that every graph in S can be (4, k)-colored; we conjecture that 4 can be replaced by 3 in this statement.  相似文献   

8.
The graph of an algebra A is the relational structure G(A) in which the relations are the graphs of the basic operations of A. For a class ?? of algebras let G(??)={G(A)∣A∈??}. Assume that ?? is a class of semigroups possessing a nontrivial member with a neutral element and let ? be the universal Horn class generated by G(??). We prove that the Boolean core of ?, i.e., the topological prevariety generated by finite members of ? equipped with the discrete topology, does not admit a first-order axiomatization relative to the class of all Boolean topological structures in the language of ?. We derive analogous results when ?? is a class of monoids or groups with a nontrivial member.  相似文献   

9.
This paper defines the concept of sequential coloring. If G or its complement is one of four major types of perfect graphs, G is shown to be uniquely k-colorable it and only if it is sequentially k-colorable. It is conjectured that this equivalence is true for all perfect graphs. A potential role for sequential coloring in verifying the Strong Perfect Graph Conjecture is discussed. This conjecture is shown to be true for strongly sequentially colorable graphs.  相似文献   

10.
We consider two classes of graphs: (i) trees of order n and diameter d =n − 3 and (ii) unicyclic graphs of order n and girth g = n − 2. Assuming that each graph within these classes has two vertices of degree 3 at distance k, we order by the index (i.e. spectral radius) the graphs from (i) for any fixed k (1 ? k ? d − 2), and the graphs from (ii) independently of k.  相似文献   

11.
An interval k-graph is the intersection graph of a family of intervals of the real line partitioned into k classes with vertices adjacent if and only if their corresponding intervals intersect and belong to different classes. In this paper we study the cocomparability interval k-graphs; that is, the interval k-graphs whose complements have a transitive orientation and are therefore the incomparability graphs of strict partial orders. For brevity we call these orders interval k-orders. We characterize the kind of interval representations a cocomparability interval k-graph must have, and identify the structure that guarantees an order is an interval k-order. The case k =?2 is peculiar: cocomparability interval 2-graphs (equivalently proper- or unit-interval bigraphs, bipartite permutation graphs, and complements of proper circular-arc graphs to name a few) have been characterized in many ways, but we show that analogous characterizations do not hold if k >?2. We characterize the cocomparability interval 3-graphs via one forbidden subgraph and hence interval 3-orders via one forbidden suborder.  相似文献   

12.
In the Graph Realization Problem (GRP), one is given a graph  $G$ , a set of non-negative edge-weights, and an integer  $d$ . The goal is to find, if possible, a realization of  $G$ in the Euclidian space $\mathbb R ^d$ , such that the distance between any two vertices is the assigned edge weight. The problem has many applications in mathematics and computer science, but is NP-hard when the dimension  $d$ is fixed. Characterizing tractable instances of GRP is a classical problem, first studied by Menger in 1931. We construct two new infinite families of GRP instances which can be solved in polynomial time. Both constructions are based on the blow-up of fixed small graphs with large expanders. Our main tool is the Connelly’s condition in Rigidity Theory, combined with an explicit construction and algebraic calculations of the rigidity (stress) matrix. As an application of our results, we describe a general framework to construct uniquely k-colorable graphs. These graphs have the extra property of being uniquely vector k-colorable. We give a deterministic explicit construction of such a family using Cayley expander graphs.  相似文献   

13.
The problem of when a recursive graph has a recursive k-coloring has been extensively studied by Bean, Schmerl, Kierstead, Remmel, and others. In this paper, we study the polynomial time analogue of that problem. We develop a number of negative and positive results about colorings of polynomial time graphs. For example, we show that for any recursive graph G and for any k, there is a polynomial time graph G′ whose vertex set is {0,1}* such that there is an effective degree preserving correspondence between the set of k-colorings of G and the set of k-colorings of G′ and hence there are many examples of k-colorable polynomial time graphs with no recursive k-colorings. Moreover, even though every connected 2-colorable recursive graph is recursively 2-colorable, there are connected 2-colorable polynomial time graphs which have no primitive recursive 2-coloring. We also give some sufficient conditions which will guarantee that a polynomial time graph has a polynomial time or exponential time coloring.  相似文献   

14.
We prove that, for fixed k ≥ 3, the following classes of labeled n-vertex graphs are asymptotically equicardinal: graphs of diameter k, connected graphs of diameter at least k, and (not necessarily connected) graphs with a shortest path of length at least k. An asymptotically exact approximation of the number of such n-vertex graphs is obtained, and an explicit error estimate in the approximation is found. Thus, the estimates are improved for the asymptotic approximation of the number of n-vertex graphs of fixed diameter k earlier obtained by Füredi and Kim. It is shown that almost all graphs of diameter k have a unique pair of diametrical vertices but almost all graphs of diameter 2 have more than one pair of such vertices.  相似文献   

15.
An apple A k is the graph obtained from a chordless cycle C k of length k ≥ 4 by adding a vertex that has exactly one neighbor on the cycle. The class of apple-free graphs is a common generalization of claw-free graphs and chordal graphs, two classes enjoying many attractive properties, including polynomial-time solvability of the maximum weight independent set problem. Recently, Brandstädt et al. showed that this property extends to the class of apple-free graphs. In the present paper, we study further generalization of this class called graphs without large apples: these are (A k , A k+1, . . .)-free graphs for values of k strictly greater than 4. The complexity of the maximum weight independent set problem is unknown even for k = 5. By exploring the structure of graphs without large apples, we discover a sufficient condition for claw-freeness of such graphs. We show that the condition is satisfied by bounded-degree and apex-minor-free graphs of sufficiently large tree-width. This implies an efficient solution to the maximum weight independent set problem for those graphs without large apples, which either have bounded vertex degree or exclude a fixed apex graph as a minor.  相似文献   

16.
We examine classes of real-valued functions of 0-1 variables closed under algebraic operations as well as topological convergence, and having a certain local characteristic (requiring that any function not in the class should have a k-variable minor not belonging to this class). It is shown that for k=2, the only 4 maximal classes with these properties are those of submodular, supermodular, monotone increasing and monotone decreasing functions. All the 13 locally defined closed classes are determined and shown to be intersections of the 4 maximal ones. All maximal classes for k≥3 are determined and characterized by the sign of higher order derivatives of the functions in the class.  相似文献   

17.
We propose a conjecture regarding the lower bound for the number of edges in locally k-connected graphs and we prove it for \(k=2\). In particular, we show that every connected locally 2-connected graph is \(M_3\)-rigid. For the special case of surface triangulations, this fact was known before using topological methods. We generalize this result to all locally 2-connected graphs and give a purely combinatorial proof. Our motivation to study locally k-connected graphs comes from lower bound conjectures for flag triangulations of manifolds, and we discuss some more specific problems in this direction.  相似文献   

18.
Lovász, Saks, and Trotter showed that there exists an on-line algorithm which will color any on-linek-colorable graph onn vertices withO(nlog(2k–3) n/log(2k–4) n) colors. Vishwanathan showed that at least (log k–1 n/k k ) colors are needed. While these remain the best known bounds, they give a distressingly weak approximation of the number of colors required. In this article we study the case of perfect graphs. We prove that there exists an on-line algorithm which will color any on-linek-colorable perfect graph onn vertices withn 10k/loglogn colors and that Vishwanathan's techniques can be slightly modified to show that his lower bound also holds for perfect graphs. This suggests that Vishwanathan's lower bound is far from tight in the general case.Research partially supported by Office of Naval Research grant N00014-90-J-1206.  相似文献   

19.
A subtree of a graph is called inscribed if no three vertices of the subtree generate a triangle in the graph. We prove that, for fixed k, the independent set problem is solvable in polynomial time for each of the following classes of graphs: (1) graphs without subtrees with k leaves, (2) subcubic graphs without inscribed subtrees with k leaves, and (3) graphs with degree not exceeding k and lacking induced subtrees with four leaves.  相似文献   

20.
This paper is the second part of a study devoted to the mutual exclusion scheduling problem. Given a simple and undirected graph G and an integer k, the problem is to find a minimum coloring of G such that each color is used at most k times. The cardinality of such a coloring is denoted by χ(G,k). When restricted to interval graphs or related classes like circular-arc graphs and tolerance graphs, the problem has some applications in workforce planning. Unfortunately, the problem is shown to be NP-hard for interval graphs, even if k is a constant greater than or equal to four [H.L. Bodlaender, K. Jansen, Restrictions of graph partition problems. Part I. Theoret. Comput. Sci. 148 (1995) 93-109]. In this paper, the problem is approached from a different point of view by studying a non-trivial and practical sufficient condition for optimality. In particular, the following proposition is demonstrated: if an interval graph G admits a coloring such that each color appears at least k times, then χ(G,k)=⌈n/k⌉. This proposition is extended to several classes of graphs related to interval graphs. Moreover, all our proofs are constructive and provide efficient algorithms to solve the MES problem for these graphs, given a coloring satisfying the condition in input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号