首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
Uniform asymptotic formulas are obtained for the Stieltjes-Wigert polynomial, the q−1-Hermite polynomial and the q-Laguerre polynomial as the degree of the polynomial tends to infinity. In these formulas, the q-Airy polynomial, defined by truncating the q-Airy function, plays a significant role. While the standard Airy function, used frequently in the uniform asymptotic formulas for classical orthogonal polynomials, behaves like the exponential function on one side and the trigonometric functions on the other side of an extreme zero, the q-Airy polynomial behaves like the q-Airy function on one side and the q-Theta function on the other side. The last two special functions are involved in the local asymptotic formulas of the q-orthogonal polynomials. It seems therefore reasonable to expect that the q-Airy polynomial will play an important role in the asymptotic theory of the q-orthogonal polynomials.  相似文献   

2.
3.
In this work we study the Plancherel-Rotach type asymptotics for Stieltjes-Wigert, q-Laguerre and Ismail-Masson orthogonal polynomials with complex scalings. The main terms of the asymptotics for Stieltjes-Wigert and q-Laguerre polynomials (Ismail-Masson polynomials) contain Ramanujan function Aq(z) for scaling parameters above the vertical line R(s)=2 (); the main terms of the asymptotics involve theta function for scaling parameters in the vertical strip 0<R(s)<2 (). When scaling parameters in the vertical strips, the number theoretical properties of scaling parameters completely determine the orders of the error terms. These asymptotic formulas may provide some insights to new random matrix models and also add a new link between special functions and number theory.  相似文献   

4.
We establish the Plancherel–Rotach-type asymptotics around the largest zero (the soft edge asymptotics) for some classes of polynomials satisfying three-term recurrence relations with exponentially increasing coefficients. As special cases, our results include this type of asymptotics for q ?1-Hermite polynomials of Askey, Ismail, and Masson; q-Laguerre polynomials; and the Stieltjes–Wigert polynomials. We also introduce a one-parameter family of solutions to the q-difference equation of the Ramanujan function.  相似文献   

5.
We derive representations for certain entire q-functions and apply our technique to the Ramanujan entire function (or q-Airy function) and q-Bessel functions. This is used to show that the asymptotic series of the large zeros of the Ramanujan entire function and similar functions are also convergent series. The idea is to show that the zeros of the functions under consideration satisfy a nonlinear integral equation.  相似文献   

6.
We show connection formulae between the origin and infinity for local solutions of the q-difference equation satisfied by the Ramanujan entire function. These solutions are given by the Ramanujan entire function, the q-Airy function, and the divergent basic hypergeometric series 2 φ 0(0,0;?;q,x). We use two different q-Borel–Laplace resummation methods to obtain our connection formulae.  相似文献   

7.
A special case of the big q-Jacobi polynomials Pn(x;a,b,c;q), which corresponds to a=b=−c, is shown to satisfy a discrete orthogonality relation for imaginary values of the parameter a (outside of its commonly known domain 0<a<q−1). Since Pn(x;qα,qα,−qα;q) tend to Gegenbauer (or ultraspherical) polynomials in the limit as q→1, this family represents another q-extension of these classical polynomials, different from the continuous q-ultraspherical polynomials of Rogers. For a dual family with respect to the polynomials Pn(x;a,a,−a;q) (i.e., for dual discrete q-ultraspherical polynomials) we also find new orthogonality relations with extremal measures.  相似文献   

8.
In this paper, we are interested in the calculation of the Haezendonck-Goovaerts risk measure, which is defined via a convex Young function and a parameter q∈(0,1) representing the confidence level. We mainly focus on the case in which the risk variable follows a distribution function from a max-domain of attraction. For this case, we restrict the Young function to be a power function and we derive exact asymptotics for the Haezendonck-Goovaerts risk measure as q1. As a subsidiary, we also consider the case with an exponentially distributed risk variable and a general Young function, and we obtain an analytical expression for the Haezendonck-Goovaerts risk measure.  相似文献   

9.
The asymptotic behavior of quadratic Hermite–Padé polynomials associated with the exponential function is studied for n→∞. These polynomials are defined by the relation
(*)
pn(z)+qn(z)ez+rn(z)e2z=O(z3n+2) as z→0,
where O(·) denotes Landau's symbol. In the investigation analytic expressions are proved for the asymptotics of the polynomials, for the asymptotics of the remainder term in (*), and also for the arcs on which the zeros of the polynomials and of the remainder term cluster if the independent variable z is rescaled in an appropriate way. The asymptotic expressions are defined with the help of an algebraic function of third degree and its associated Riemann surface. Among other possible applications, the results form the basis for the investigation of the convergence of quadratic Hermite–Padé approximants, which will be done in a follow-up paper.  相似文献   

10.
11.
We provide an explicit formula for the Tornheim double series in terms of integrals involving the Hurwitz zeta function. We also study the limit when the parameters of the Tornheim sum become natural numbers, and show that in that case it can be expressed in terms of definite integrals of triple products of Bernoulli polynomials and the Bernoulli function Ak(q)?kζ(1-k,q).  相似文献   

12.
In this paper we investigate the following “polynomial moment problem”: for a given complex polynomial P(z) and distinct a,bC to describe polynomials q(z) orthogonal to all powers of P(z) on [a,b]. We show that for given P(z), q(z) the condition that q(z) is orthogonal to all powers of P(z) is equivalent to the condition that branches of the algebraic function Q(P−1(z)), where , satisfy a certain system of linear equations over Z. On this base we provide the solution of the polynomial moment problem for wide classes of polynomials. In particular, we give the complete solution for polynomials of degree less than 10.  相似文献   

13.
The paper is devoted to some results concerning the constructive theory of the synthesis of irreducible polynomials over Galois fields GF(q), q=2s. New methods for the construction of irreducible polynomials of higher degree over GF(q) from a given one are worked out. The complexity of calculations does not exceed O(n3) single operations, where n denotes the degree of the given irreducible polynomial. Furthermore, a recurrent method for constructing irreducible (including self-reciprocal) polynomials over finite fields of even characteristic is proposed.  相似文献   

14.
We derive asymptotics for polynomials orthogonal over the complex unit disk with respect to a weight of the form 2|h(z)|, with h(z) a polynomial without zeros in |z|<1. The behavior of the polynomials is established at every point of the complex plane. The proofs are based on adapting to the unit disk a technique of J. Szabados for the asymptotic analysis of polynomials orthogonal over the unit circle with respect to the same type of weight.  相似文献   

15.
A classical lemma of Weil is used to characterise quadratic polynomials f with coefficients GF(qn), q odd, with the property that f(x) is a non-zero square for all xGF(q). This characterisation is used to prove the main theorem which states that there are no subplanes of order q contained in the set of internal points of a conic in PG(2,qn) for q?4n2−8n+2. As a corollary to this theorem it then follows that the only semifield flocks of the quadratic cone of PG(3,qn) for those q exceeding this bound are the linear flocks and the Kantor-Knuth semifield flocks.  相似文献   

16.
17.
We present a randomized algorithm that on inputting a finite field K with q elements and a positive integer d outputs a degree d irreducible polynomial in K[x]. The running time is d 1+?(d)×(log q)5+?(q) elementary operations. The function ? in this expression is a real positive function belonging to the class o(1), especially, the complexity is quasi-linear in the degree d. Once given such an irreducible polynomial of degree d, we can compute random irreducible polynomials of degree d at the expense of d 1+?(d) × (log q)1+?(q) elementary operations only.  相似文献   

18.
The classical Eulerian polynomials can be expanded in the basis t k?1(1+t) n+1?2k (1≤k≤?(n+1)/2?) with positive integral coefficients. This formula implies both the symmetry and the unimodality of the Eulerian polynomials. In this paper, we prove a q-analogue of this expansion for Carlitz’s q-Eulerian polynomials as well as a similar formula for Chow–Gessel’s q-Eulerian polynomials of type B. We shall give some applications of these two formulas, which involve two new sequences of polynomials in the variable q with positive integral coefficients. It is an open problem to give a combinatorial interpretation for these polynomials.  相似文献   

19.
We consider asymptotics of orthogonal polynomials with respect to weights w(x)dx = eQ(x) dx on the real line, where Q(x) = Σ qk xk, q2m > 0, denotes a polynomial of even order with positive leading coefficient. The orthogonal polynomial problem is formulated as a Riemann‐Hilbert problem following [22, 23]. We employ the steepest‐descent‐type method introduced in [18] and further developed in [17, 19] in order to obtain uniform Plancherel‐Rotach‐type asymptotics in the entire complex plane, as well as asymptotic formulae for the zeros, the leading coefficients, and the recurrence coefficients of the orthogonal polynomials. © 1999 John Wiley & Sons, Inc.  相似文献   

20.
In this paper we show the equivalence between Goldman-Rota q-binomial identity and its inverse. We may specialize the value of the parameters in the generating functions of Rogers-Szegö polynomials to obtain some classical results such as Euler identities and the relation between classical and homogeneous Rogers-Szegö polynomials. We give a new formula for the homogeneous Rogers-Szegö polynomials hn(x,y|q). We introduce a q-difference operator θxy on functions in two variables which turn out to be suitable for dealing with the homogeneous form of the q-binomial identity. By using this operator, we got the identity obtained by Chen et al. [W.Y.C. Chen, A.M. Fu, B. Zhang, The homogeneous q-difference operator, Advances in Applied Mathematics 31 (2003) 659-668, Eq. (2.10)] which they used it to derive many important identities. We also obtain the q-Leibniz formula for this operator. Finally, we introduce a new polynomials sn(x,y;b|q) and derive their generating function by using the new homogeneous q-shift operator L(bθxy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号