首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study an extension of a C1,α regularity theory developed by L. Caffarelli in [2] to some fully nonlinear elliptic equations of second order. In fact, we investigate a two‐phase free boundary problem in which a fully nonlinear elliptic equation of second order is verified by the solution in the positive and the negative domains. Assuming the free boundary is locally a Lipschitz graph, we have established the C1,α regularity of the free boundary. © 2000 John Wiley & Sons, Inc.  相似文献   

2.
The paper studies the existence and non-existence of global weak solutions to the Cauchy problem for a class of quasi-linear wave equations with nonlinear damping and source terms. It proves that when α?max{m,p}, where m+1, α+1 and p+1 are, respectively, the growth orders of the nonlinear strain terms, the nonlinear damping term and the source term, under rather mild conditions on initial data, the Cauchy problem admits a global weak solution. Especially in the case of space dimension N=1, the weak solutions are regularized and so generalized and classical solution both prove to be unique. On the other hand, if 0?α<1, and the initial energy is negative, then under certain opposite conditions, any weak solution of the Cauchy problem blows up in finite time. And an example is shown.  相似文献   

3.
The Busemann-equation is a classical equation coming from fluid dynamics. The well-posed problem and regularity of solution of Busemann-equation with nonlinear term are interesting and important. The Busemann-equation is elliptic in y>0 and is degenerate at the line y=0 in R2. With a special nonlinear absorb term, we study a nonlinear degenerate elliptic equation with mixed boundary conditions in a piecewise smooth domain. By means of elliptic regularization technique, a delicate prior estimate and compact argument, we show that the solution of mixed boundary value problem of Busemann-equation is smooth in the interior and Lipschitz continuous up to the degenerate boundary on some conditions. The result is better than the result of classical boundary degenerate elliptic equation.  相似文献   

4.
We solve a convection-diffusion-sorption (reaction) system on a bounded domain with dominant convection using an operator splitting method. The model arises in contaminant transport in groundwater induced by a dual-well, or in controlled laboratory experiments. The operator splitting transforms the original problem to three subproblems: nonlinear convection, nonlinear diffusion, and a reaction problem, each with its own boundary conditions. The transport equation is solved by a Riemann solver, the diffusion one by a finite volume method, and the reaction equation by an approximation of an integral equation. This approach has proved to be very successful in solving the problem, but the convergence properties where not fully known. We show how the boundary conditions must be taken into account, and prove convergence in L1,loc of the fully discrete splitting procedure to the very weak solution of the original system based on compactness arguments via total variation estimates. Generally, this is the best convergence obtained for this type of approximation. The derivation indicates limitations of the approach, being able to consider only some types of boundary conditions. A sample numerical experiment of a problem with an analytical solution is given, showing the stated efficiency of the method.  相似文献   

5.
The paper studies the existence, both locally and globally in time, stability, decay estimates and blowup of solutions to the Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow. Under the assumption that the nonlinear term of the equations is of polynomial growth order, say α, it proves that when α>1, the Cauchy problem admits a unique local solution, which is stable and can be continued to a global solution under rather mild conditions; when α?5 and the initial data is small enough, the Cauchy problem admits a unique global solution and its norm in L1,p(R) decays at the rate for 2<p?10. And if the initial energy is negative, then under a suitable condition on the nonlinear term, the local solutions of the Cauchy problem blow up in finite time.  相似文献   

6.
In this paper, we show that the method of monotone iterative technique is valid to obtain two monotone sequences that converge uniformly to extremal solutions of first and second order periodic boundary value problems and periodic solutions of functional differential equations. We obtain some new results relative to the lower solution α and upper solution β with α?β.  相似文献   

7.
In this paper, we prove the existence and uniqueness of solutions for an anti-periodic boundary value problem of nonlinear impulsive differential equations of fractional order α∈(2,3] by applying some well-known fixed point theorems. Some examples are presented to illustrate the main results.  相似文献   

8.
We obtain local C α, C 1,α, and C 2,α regularity results up to the boundary for viscosity solutions of fully nonlinear uniformly elliptic second order equations with Neumann boundary conditions.  相似文献   

9.
The aim of this paper is to investigate the existence of iterative solutions for a class of 2nth-order nonlinear multi-point boundary value problems. The multi-point boundary condition under consideration includes various commonly discussed boundary conditions, such as three- or four-point boundary condition, (n + 2)-point boundary condition and 2(n − m)-point boundary condition. The existence problem is based on the method of upper and lower solutions and its associated monotone iterative technique. A monotone iteration is developed so that the iterative sequence converges monotonically to a maximal solution or a minimal solution, depending on whether the initial iteration is an upper solution or a lower solution. Two examples are presented to illustrate the results.  相似文献   

10.
This work deals with the zero-Neumann boundary problem to a fully parabolic chemotaxis system with a nonlinear signal production function f(s) fulfilling 0 ≤ f(s) ≤ Ks~α for all s ≥ 0, where K and α are positive parameters. It is shown that whenever 0 α 2/n(where n denotes the spatial dimension) and under suitable assumptions on the initial data,this problem admits a unique global classical solution that is uniformly-in-time bounded in any spatial dimension. The proof is based on some a priori estimate techniques.  相似文献   

11.
In this paper, we consider the evolution dam problem (P) related to a compressible fluid flow governed by a generalized nonlinear Darcy's law with Dirichlet boundary conditions on some part of the boundary. We establish existence of a solution for this problem. We choose a convenient regularized problem (P?) for which we prove the existence and uniqueness of solution using the comparison Lemma 2.1 and the Schauder fixed‐point theorem. Then, we pass to the limit, when ? goes to 0, to get a solution for our problem. Moreover, we will see another approach for the incompressible case where we pass to the limit in (P), when α goes to 0, to get a solution.  相似文献   

12.
We consider initial value/boundary value problems for fractional diffusion-wave equation: , where 0<α?2, where L is a symmetric uniformly elliptic operator with t-independent smooth coefficients. First we establish the unique existence of the weak solution and the asymptotic behavior as the time t goes to ∞ and the proofs are based on the eigenfunction expansions. Second for α∈(0,1), we apply the eigenfunction expansions and prove (i) stability in the backward problem in time, (ii) the uniqueness in determining an initial value and (iii) the uniqueness of solution by the decay rate as t→∞, (iv) stability in an inverse source problem of determining t-dependent factor in the source by observation at one point over (0,T).  相似文献   

13.
In this article, we consider a single‐phase coupled nonlinear Stefan problem of the water‐head and concentration equations with nonlinear source and permeance terms and a Dirichlet boundary condition depending on the free‐boundary function. The problem is very important in subsurface contaminant transport and remediation, seawater intrusion and control, and many other applications. While a Landau type transformation is introduced to immobilize the free boundary, a transformation for the water‐head and concentration functions is defined to deal with the nonhomogeneous Dirichlet boundary condition, which depends on the free boundary function. An H1‐finite element method for the problem is then proposed and analyzed. The existence of the approximation solution is established, and error estimates are obtained for both the semi‐discrete schemes and the fully discrete schemes. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

14.
Our paper is devoted to the study of a nonlinear degenerate transient eddy current problem of the type t(|E|−1/pE)+∇×(∇×E)=0, p>1, along with appropriate initial and boundary conditions. We design a nonlinear time-discrete numerical scheme for the approximation in suitable function spaces. We show the well-posedness of the problem, prove the convergence of the approximation to a weak solution and finally derive the error estimates. In the proofs, the monotonicity methods and the Minty-Browder argument are employed.  相似文献   

15.
We prove that boundary value problems for fully nonlinear second-order parabolic equations admit L p -viscosity solutions, which are in C 1+α for an ${\alpha \in (0, 1)}$ . The equations have a special structure that the “main” part containing only second-order derivatives is given by a positive homogeneous function of second-order derivatives and as a function of independent variables it is measurable in the time variable and, so to speak, VMO in spatial variables.  相似文献   

16.
In this paper, the authors discuss the global existence and blow-up of the solution to an evolution p-Laplace system with nonlinear sources and nonlinear boundary condition. The authors first establish the local existence of solutions, then give a necessary and sufficient condition on the global existence of the positive solution.  相似文献   

17.
In this paper, we study the nonlinear evolution equation of Hele-Shaw type with dynamical boundary conditions. That is, the equation utw+f where uH(w) and H is the Heaviside function, with boundary condition μ(x,w)tw+kwν=g, where ν denotes the outward normal vector of the fixed boundary of the domain. We prove existence, uniqueness and some qualitative properties of the solution.  相似文献   

18.
In this paper we are interested in establishing up-to boundary uniform estimates for the one phase singular perturbation problem involving a nonlinear singular/degenerate elliptic operator. Our main result states: if ΩRn is a C1,α domain, for some 0<α<1 and uε verifies
  相似文献   

19.
We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C 1, α on the boundary; (ii) the solution of the Dirichlet problem for fully nonlinear uniformly elliptic equations is C 2, α on the boundary; (iii) corresponding asymptotic expansions hold. This is an extension to viscosity solutions of the classical Krylov estimates for smooth solutions.  相似文献   

20.
We prove that the solution of the oblique derivative parabolic problem in a noncylindrical domain ΩT belongs to the anisotropic Holder space C2+α, 1+α/2(gwT) 0 < α < 1, even if the nonsmooth “lateral boundary” of ΩT is only of class C1+α, (1+α)/2). As a corollary, we also obtain an a priori estimate in the Hölder space C2+α0) for a solution of the oblique derivative elliptic problem in a domain Ω0 whose boundary belongs only to the classe C1+α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号