首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种直热式快速气相色谱快速升温装置的设计   总被引:1,自引:0,他引:1  
用大电流脉冲直接加热不锈钢毛细管柱, 将脉冲间隔调整到正好使柱管局部完成热平衡, 用快速PID技术控制脉冲频率和宽度, 设计了一种直热式快速升温装置. 该装置最高升温速率可达到5 ℃/s, 升温范围 40~150 ℃, 程序升温线性相关系数大于0.9996, 最大功耗74 W, 加热平均功耗小于50 W, 在34 s内完成nC8~nC17 10种正构烷烃的分离, 保留时间重复精度误差RSD在0.22%~0.55%之间, 降温和平衡时间仅为30 s. 与常规气相色谱仪相比, 该装置分析挥发性和半挥发性有机物速度可提高20倍以上, 专用于快速气相色谱仪.  相似文献   

2.
Flash gas chromatographic (GC) analysis of 15 organophosphorus pesticides commonly occurring in food crops was performed using the Thermedics Detection EZ Flash upgrade kit installed in the oven of a HP 5890 Series II Plus gas chromatograph. The temperature program and splitless time period were the main parameters to be optimized. In the first set of experiments wheat matrix-matched standards were analyzed both by: (i) the flash GC technique (resistive heating of a 5 m capillary column), and (ii) the conventional GC technique (moderate oven temperature programming of a 30 m capillary column). Using the flash GC technique, the analysis time was reduced by a factor of more than 10 compared to the conventional GC technique. Dramatically improved detectability of analytes was achieved due to much narrower peak widths. The flash GC technique was compared with another approach to faster GC analysis employing a 5 m column and fast temperature programming with a conventional GC oven. In comparison with this alternative, in the case of flash GC significantly better retention time repeatability was observed. The other superiority of resistive heating is very rapid cooling down (i.e., equilibration to the initial conditions) which contributes to the increased sample throughput.  相似文献   

3.
An overview of the existing methods for minimization of the analysis time in gas chromatography (GC) is presented and a new system for fast temperature programming and very fast cooling down is evaluated. In this study, a system of coaxial tubes, a heating/cooling module (HC-M), was developed and studied with a capillary column placed inside the HC-M. The module itself was heated by a GC oven and cooled down by an external cooling medium. The HC-M was heated at rates of up to 330 °C min−1 and cooled at the rate of 6000 °C min−1. The GC system was prepared for the next run within a few seconds. The HC-M permits good separation reproducibility, comparable with that of a conventional GC, expressed in terms of relative retention times and peak areas of analytes reproducibilities. The HC-M can be used within any commercial gas chromatograph.  相似文献   

4.
High-speed temperature programming is implemented via the direct resistive heating of the separation column (2.3m MXT-5 Silicosteel column with a 180 microm I.D. and a 0.4 microm 5% phenyl/95% dimethyl polysiloxane film). Resistive temperature programming was coupled with synchronized dual-valve injection (with an injection pulse width of 2 ms), producing a complete high-speed gas chromatography (GC) system. A comparison of isothermal and temperature programmed separations of seven n-alkanes (C(6) and C(8)-C(13)) shows a substantial improvement of peak width and peak capacity with temperature programming. The system was further implemented in separations of a mixture of analytes from various chemical classes. Separations of the n-alkane mixture using three different temperature programming rates are reported. A temperature programming rate as high as 240 degrees C/s is demonstrated. The method for determination of temperature programming rate, based on isothermal data, is discussed. The high-speed resistive column heating temperature programming resulted in highly reproducible separations. The highest rate of temperature programming (240 degrees C/s) resulted in retention time and peak width RSD, on average, of 0.5 and 1.4%, respectively, for the n-alkane mixture. This high level of precision was achieved with peak widths-at-half-height ranging from 13 to 36 ms, and retention times ranging from 147 to 444 ms (for n-hexane to n-tridecane).  相似文献   

5.
A microwave gas chromatography (GC) column oven is engineered to generate a uniform microwave field around an open tubular column with the elimination of cold spots, which are common in a domestic microwave oven. Short cool-down time in microwave heating makes it possible to employ negative temperature programming for the enhanced separation of compounds during the process. The feasibility of negative temperature programming in microwave GC is investigated for the analysis and quantitation of four different pairs of nonvolatile and volatile compounds. The influence of intermediate column cooling rate, holding time in the cooling ramp, and reheating rate after the cooling ramp for enhanced resolution are investigated. The results obtained from negative temperature programming are compared with those from positive temperature programming. Negative temperature programming affords greater resolution of some critical pairs of analytes.  相似文献   

6.
The synergy of combining fast temperature programming capability and adsorption chromatography using fused silica based porous layer open tubular columns to achieve high throughput chromatography for the separation of volatile compounds is presented. A gas chromatograph with built‐in fast temperature programming capability and having a fast cool down rate was used as a platform. When these performance features were combined with the high degree of selectivity and strong retention characteristic of porous layer open tubular column technology, volatile compounds such as light hydrocarbons of up to C7, primary alcohols, and mercaptans can be well separated and analyzed in a matter of minutes. This analytical approach substantially improves sample throughput by at least a factor of ten times when compared to published methodologies. In addition, the use of porous layer open tubular columns advantageously eliminates the need for costly and time‐consuming cryogenic gas chromatography required for the separation of highly volatile compounds by partition chromatography with wall coated open tubular column technology. Relative standard deviations of retention time for model compounds such as alkanes from methane to hexane were found to be less than 0.3% (n = 10) and less than 0.5% for area counts for the compounds tested at two levels of concentration by manual injection, namely, 10 and 1000 ppm v/v (n = 10). Difficult separations were accomplished in one single analysis in less than 2 min such as the characterization of 17 components in cracked gas containing alkanes, alkenes, dienes, branched hydrocarbons, and cyclic hydrocarbons.  相似文献   

7.
2-D GC is a logical and cost effective extension to 1-D GC for improving the separation resolution, selectivity, and peak capacity of an analytical system. The advent of electronic pressure control systems that are accurate to the third decimal place, combined with recently innovated chromatographic devices such as capillary flow technology, has eliminated many deficiencies encountered in current conventional 2-D GC by making the technique reliable and simple to implement in both production and research analytical facilities. Low thermal mass GC (LTM-GC) was successfully integrated with capillary flow technology to further enhance overall 2-D GC chromatographic system performance by providing not only faster throughput via rapid heating and cooling, but independent temperature control for each dimension to maximize separation power. As an example, despite the enhanced peak capacity obtained from conventional 2-D GC, alkyl naphthalene isomers such as 2,3-dimethyl and 1,4-dimethyl naphthalene coeluted. These two critical compounds were well resolved (R = 5.2) using 2-D GC with LTM-GC with a similar analytical time. This paper demonstrates the benefits of combining capillary flow technology with LTM-GC to provide major enhancements to conventional 2-D GC. The synergy of these techniques is highlighted with practical industrial applications.  相似文献   

8.
Nickel clad or nickel wired fused silica column bundles were constructed and evaluated. The nickel sheathing or wire functions not only as the heating element for direct resistive heat, but also as the temperature sensor, since nickel has a large resistive temperature coefficient. With this method the temperature controller is able to apply power and measure the temperature simultaneously on the same nickel element, which can effectively avoid the temperature overshoot caused by any delayed response of the sensor to the heating element. This approach also eliminates the cool spot where a separate sensor touches the column. There are some other advantages to the column bundle structure: (1) the column can be heated quickly because of the direct heating and the column's low mass, shortening analysis time. We demonstrate a maximum heating rate of 13 °C/s (800 °C/min). (2) Cooling time is also short, increasing sample throughput. The column drops from 360 °C to 40 °C is less than 1 min. (3) Power consumption is very low – 1.7 W/m (8.5 W total) for a 5 m column and 0.69 W/m (10.4 W total) for a 15 m column when they are kept at 200 °C isothermally. With temperature programming, the power consumption for a 5 m column is less then 70 W for an 800 °C/min ramp to 350 °C. (4) The column bundle is small, with a diameter of only about 2.25 in. All these advantages make the column bundle ideal for fast GC analysis or portable instruments. Column efficiencies and retention time repeatability have been evaluated and compared with the conventional oven heating method in this study. For isothermal conditions, the column efficiencies are measured by effective theoretical plate number. It was found that the plate number with resistive heat is always less than with oven heat, due to uneven heat in the column bundle. However, the loss is not significant – an average of about 1.5% for the nickel clad column and 4.5% for the nickel wired column. Separation numbers are used for the comparison with temperature programming, with results similar to those observed for isothermal conditions. Retention time repeatability for direct heat were 0.010% RSD for isotheral and 0.037% RSD for temperature programming, which is similar to those obtained by oven heat. Applications have been demonstrated, including diesel and PAH analysis.  相似文献   

9.
An experimental injection port has been designed for split or splitless sample introduction in capillary gas chromatography; the inlet uses electronic pressure control, in order that the column head pressure may be set from the GC keyboard, and the inlet may be used in the constant flow or constant pressure modes. Alternatively, the column head pressure may be programmed up or down during a GC run in a manner analogous to even temperature programming. Using electronic pressure control, a method was developed which used high column head pressures (high column flow rates) at the time of injection, followed by rapid reduction of the pressure to that required for optimum GC separation. In this way, high flow rates could be used at the time of splitless injection to reduce sample discrimination, while lower flow rates could be used for the separation. Using this method, up to 5 μl of a test sample could be injected in the splitless mode with no discrimination; in another experiment, 2.3 times as much sample was introduced into the column by using electronic pressure programming. Some GC peak broadening was observed in the first experiment.  相似文献   

10.
An approach to shortening the analysis time for practical fast gas chromatography (GC) by using Method Translator software, which can be downloaded free from the Internet, is presented. This software simplifies the process of optimizing temperature programming while changing column dimensions, carrier gas type, and flow. Basic chromatographic theory is employed in a practical manner for adjusting column dimensions for optimal performance. In addition, electronic pneumatic control and high oven ramp rates make it easier to achieve fast analysis times without reproducibility problems. This practical approach is demonstrated using Contract Laboratory Program pesticide analytes. The factors found to be most important in decreasing the analysis time without a loss of performance are utilization of GC columns having smaller diameters and substitution of hydrogen for helium as the carrier gas.  相似文献   

11.
Temperature requirements for trapping and release of compounds in a cryogenic gas loop-type GC x GC modulator were determined. Maximum trapping temperatures on the uncoated, deactivated modulator capillary were determined for compounds from C4 (bp -0.5 degrees C) to C40 (bp 522 degrees C). The liquid-nitrogen cooled gas flow rate was reduced from a high of 15.5 to 1.5 SLPM over the range to achieve the required trapping temperature. Excessive cold jet flow rates caused irreversible trapping and peak tailing for semi-volatile compounds above C26. Alternate cold jet coolants were investigated. An ice water-cooled jet was able to trap compounds with boiling points from C18 (bp 316 degrees C) to C40 and a room temperature air-cooled jet was able to trap compounds from C20 (bp 344 degrees C) to C40. The hot jet produced launch temperatures approximately 40 degrees C hotter than the elution temperature with heating time constants of 8 to 27 ms. Modulated compound peaks were symmetrical with half-height peak widths of 43 to 56 ms for compounds with little second column retention, and 70 to 75 ms for compounds with more second column retention. The liquid nitrogen-cooled loop modulator with gas flow programming was used to produce a GC x GC chromatogram for a crude oil that contained compounds from C7 to C47.  相似文献   

12.
The response of gold nanorods to both thermal and ultrafast laser-induced heating has been examined. The thermal heating experiments show structural changes that occur on timescales ranging from hours to days. At the highest temperature examined (250 degrees C) the nanorods are transformed into spheres within an hour. On the other hand, no structural changes are observed in the laser-induced heating experiments up to temperatures of 700 +/- 50 degrees C. This is attributed to thermal diffusion in the laser experiments. Measurements of the period of the extensional mode of the nanorods using time-resolved spectroscopy show a significant softening at high pump laser powers. However, the decrease in the period is less than expected from bulk Young's modulus vs. temperature data.  相似文献   

13.
A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of fast GC and fast GC-MS and the various trade-offs involved in having powerful and practical fast GC-MS.  相似文献   

14.
Savings in analysis time in capillary GC have always been an important issue for chromatographers since the introduction of capillary columns by Golay in 1958. In laboratories where gas chromatographic techniques are routinely applied as an analytical technique, every reduction of analysis time, without significant loss of resolution, can be translated into a higher sample throughput and hence reduce the laboratory operating costs. In this contribution, three different approaches for obtaining fast GC separations are investigated. First, a narrow-bore column is used under conventional GC operating conditions. Secondly, the same narrow-bore column is used under typical fast GC conditions. Here, a high oven temperature programming rate is used. The third approach uses a recent new development in GC instrumentation: Flash-2D-GC. Here the column is placed inside a metal tube, which is resistively heated. With this system, a temperature programming rate of 100°/s is possible. The results obtained with each of these three approaches are compared with results obtained on a column with conventional dimensions. This comparison takes retention times as well as plate numbers and resolution into consideration.  相似文献   

15.
直热式毛细管柱对直馏汽油组成的分析   总被引:2,自引:0,他引:2  
刘晓微  杨海鹰  陆婉珍 《色谱》1998,16(3):198-202
采用柱内电阻丝加热升温的直热式13X分子筛薄层毛细管填充柱分析汽油的族组成。分析时间比炉温加热短50min,定量分析结果与炉温加热和多孔层开管柱基本相同。保留时间的相对偏差小于3%,直馏汽油中绝大部分组分定量结果的相对偏差小于5%。  相似文献   

16.
Gas chromatography is widely applied to separate, identify, and quantify components of samples in a timely manner. Increasing demand for analytical throughput, instrument portability, environmental sustainability, and more economical analysis necessitates the development of new gas chromatography instrumentation. The applications of resistive column heating technologies have been espoused for nearly thirty years and resistively heated gas chromatography has been commercially available for the last ten years. Despite this lengthy period of existence, resistively heated gas chromatography has not been universally adopted. This low rate of adoption may be partially ascribed to the saturation of the market with older convection oven technology, coupled with other analytical challenges such as sampling, injection, detection and data processing occupying research. This article assesses the advantages and applications of resistive heating in gas chromatography and discusses practical considerations associated with adoption of this technology.  相似文献   

17.
石墨烯基海绵是一类新型的外伤止血材料, 由二维纳米片层构筑形成, 具有多级孔道结构、 快速液体吸收能力及易于表面功能化等特性, 可作为平台式载体实现多功能复合, 在外伤止血领域表现出良好的应用前景. 本文对石墨烯基海绵的外伤止血应用与机制研究进行了综述, 并对其发展前景进行了展望.  相似文献   

18.
Lu X  Kong H  Li H  Ma C  Tian J  Xu G 《Journal of chromatography. A》2005,1086(1-2):175-184
A model is developed for predicting the resolution of interested component pair and calculating the optimum temperature programming condition in the comprehensive two-dimensional gas chromatography (GC x GC). Based on at least three isothermal runs, retention times and the peak widths at half-height on both dimensions are predicted for any kind of linear temperature-programmed run on the first dimension and isothermal runs on the second dimension. The calculation of the optimum temperature programming condition is based on the prediction of the resolution of "difficult-to-separate components" in a given mixture. The resolution of all the neighboring peaks on the first dimension is obtained by the predicted retention time and peak width on the first dimension, the resolution on the second dimension is calculated only for the adjacent components with un-enough resolution on the first dimension and eluted within a same modulation period on the second dimension. The optimum temperature programming condition is acquired when the resolutions of all components of interest by GC x GC separation meet the analytical requirement and the analysis time is the shortest. The validity of the model has been proven by using it to predict and optimize GC x GC temperature programming condition of an alkylpyridine mixture.  相似文献   

19.
A high temperature gas chromatograph has been developed which is capable of operating at column oven temperatures up to 500°C. In addition, the detector can operate at temperatures up to 500°C, and the injector up to 450°C. The injector on this instrument is a temperature programmable direct injector, designed specifically to introduce labile or high molecular weight samples into the GC without molecular weight discrimination. The design of this GC and injector will be described, and high temperature applications will be discussed.  相似文献   

20.
High-speed gas chromatography: an overview of various concepts.   总被引:2,自引:0,他引:2  
An overview is given of existing methods to minimise the analysis time in gas chromatography (GC) being the subject of many publications in the scientific literature. Packed and (multi-) capillary columns are compared with respect to their deployment in fast GC. It is assumed that the contribution of the stationary phase to peak broadening can be neglected (low liquid phase loading and thin film columns, respectively). The treatment is based on the minimisation of the analysis time required on both column types for the resolution of a critical pair of solutes (resolution normalised conditions). Theoretical relationships are given, describing analysis time and the related pressure drop. The equations are expressed in reduced parameters, making a comparison of column types considerably simpler than with the conventional equations. Reduction of the characteristic diameter, being the inside column diameter for open tubular columns and the particle size for packed columns, is the best approach to increase the separation speed in gas chromatography. Extremely fast analysis is only possible when the required number of plates to separate a critical pair of solutes is relatively low. Reducing the analysis time by reduction of the characteristic diameter is accompanied by a proportionally higher required inlet pressure. Due to the high resistance of flow of packed columns this seriously limits the use of packed columns for fast GC. For fast GC hydrogen has to be used as carrier gas and in some situations vacuum-outlet operation of capillary columns allows a further minimisation of the analysis time. For fast GC the columns should be operated near the conditions for minimum plate height. Linear temperature programmed fast GC requires high column temperature programming rates. Reduction of the characteristic diameter affects the sample capacity of the "fast columns". This effect is very pronounced for narrow-bore columns and in principle non-existing in packed columns. Multi-capillary columns (a parallel configuration of some 900 narrow-bore capillaries) take an intermediate position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号