首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spices are a popular food of plant origin, rich in various phytochemicals and recognized for their numerous properties. The aim of the study was to evaluate the antioxidant and antimicrobial activity, as well as the content of specialized metabolites, of aqueous extracts of three spice species––garlic (Allium sativum L.), ginger (Zingiber officinalle L.) and turmeric (Curcuma longa L.)––prepared by green extraction methods. Ultrasound treatment increased the chromaticity parameter b value of turmeric and ginger extracts, thus indicating a higher yellow color predominantly due to curcuminoids characteristic of these species. Ultrasound-assisted extraction significantly increased the content of total soluble solids, phenolic compounds, total carotenoids and vitamin C. The temperature of the system was also an important factor, with the highest (70 °C) conditions in ultrasound-assisted extraction having a positive effect on thermolabile compounds (vitamin C, phenolics, total carotenoids). For example, turmeric extract treated with ultrasound at 70 °C had up to a 67% higher vitamin C content and a 69.4% higher total carotenoid content compared to samples treated conventionally at the same temperature, while ginger extracts had up to 40% higher total phenols. All different concentrations of spice extracts were not sufficient for complete inhibition of pathogenic bacterial strains of Salmonella, L. monocytogenes and S. aureus; however, only garlic extracts had an effect on slowing down the growth and number of L. monocytogenes colonies. Spice extracts obtained by ultrasonic treatment contained a significantly higher level of bioactive compounds and antioxidant capacity, suggesting that the extracts obtained have significant nutritional potential and thus a significant possibility for phytotherapeutic uses.  相似文献   

2.
Hydrophobic curcumin in temulawak extract and hydrophilic betacyanin in red dragon fruit extract are high-value bioactive compounds with extensive applications in functional food. In this study, these extracts were encapsulated in water-in-oil-in-water (w/o/w) nanoemulsions as a delivery system using a two-step high-energy emulsification method. PGPR and Span 20 were used as lipophilic emulsifiers for the primary w/o emulsion. The most stable w/o/w formulation with the least oil phase separation of 5% v/v consisted of w/o emulsion (15% w/w) and Tween 80 (1.5% w/w) as hydrophilic emulsifier. The formulation was characterized by a 189-nm mean droplet diameter, 0.16 polydispersity index, and –32 mV zeta potential. The freeze–thaw stability may be attributed to the combination of low w/o emulsion content and high Tween 80 concentration in the outer water phase of the w/o/w nanoemulsions used in this study. The IC50 values of the nanoemulsion and the red dragon fruit extract were similar. It means that the higher concentration of curcumin in the nanoemulsions and the lower IC50 value of temulawak extract ensured sufficient antioxidant activities of the w/o/w nanoemulsions.  相似文献   

3.
Ginger is a common condiment that is widely used as Chinese medicine in China and Southeast Asia. Dried ginger and stir fried ginger are two common processed products of ginger, with distinct clinical uses. The aim of this study was to identify the chemical components (quality markers, Q-mark) responsible for the differences in in vitro hemostatic activity between dried and stir fried ginger and to provide a basis for the selection between the two types of ginger in clinical application. In this study, methanolic extracts of dried and stir fried ginger were characterized using UPLC-Q/TOF-MS and then evaluated for in vitro coagulation activity. Spectral effect correlation analysis was used to identify quality markers, while molecular docking simulation was used to evaluate the binding energy between potential active compounds and target proteins. A total of 49 chemical constituents of the ginger extracts were identified using UPLC-Q/TOF-MS, 27 of which were significantly different between the two extracts. A fingerprint of 18 batches of dried and stir fried ginger established that zingiberone, 6-gingerol, 8-gingerol, 6-shogaol, 10-gingerol, 8-shogaol, and 10-shogaol were common constituents of the two extracts. Results of coagulation assays revealed that dried ginger had anti-coagulation effects, while stir fried ginger had hemostatic effect. Zingiberone, 6-shogaol and 10-shogaol were identified as the active components responsible for the hemostatic effect of Stir fried ginger through multivariate statistical analysis. In addition, molecular docking simulations suggested that these three components bound to Src proteins on platelets. Consequently, 6-gingerol, zingiberone, 6-shogaol and 10-shogaol were selected as quality markers to distinguish between dried and stir fried ginger. These results provide scientific evidence for the establishment of a quality evaluation system for the integrity and specificity of dried and stir fried ginger.  相似文献   

4.
Turmeric has been used for decades for its antioxidant and anti-inflammatory effect, which is due to an active ingredient isolated from the plant, called curcumin. However, the extremely poor water-solubility of curcumin often limits the bioavailability of the drug. The aim of our experimental work was to improve the solubility and thus bioavailability of curcumin by developing self-nano/microemulsifying drug delivery systems (SN/MEDDS). Labrasol and Cremophor RH 40 as nonionic surfactants, Transcutol P as co-surfactant and isopropyl myristate as the oily phase were used during the formulation. The average droplet size of SN/MEDDS containing curcumin was between 32 and 405 nm. It was found that the higher oil content resulted in larger particle size. The drug loading efficiency was between 93.11% and 99.12% and all formulations were thermodynamically stable. The curcumin release was studied at pH 6.8, and the release efficiency ranged between 57.3% and 80.9% after 180 min. The results of the MTT cytotoxicity assay on human keratinocyte cells (HaCaT) and colorectal adenocarcinoma cells (Caco-2) showed that the curcumin-containing preparations were non-cytotoxic at 5 w/v%. According to the results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide dismutase (SOD) assays, SNEDDS showed significantly higher antioxidant activity. The anti-inflammatory effect of the SN/MEDDS was screened by enzyme-linked immunosorbent assay (ELISA). SNEDDS formulated with Labrasol as surfactant, reduced tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) levels below 60% at a concentration of 10 w/w%. Our results verified the promising use of SN/MEDDS for the delivery of curcumin. This study demonstrates that the SN/MEDDS could be promising alternatives for the formulation of poorly soluble lipophilic compounds with low bioavailability.  相似文献   

5.
Novel turmeric rhizome extract nanoparticles (TE-NPs) were developed from fractions of dried turmeric (Curcuma longa Linn.) rhizome. Phytochemical studies, by using HPLC and TLC, of the fractions obtained from ethanol extraction and solvent–solvent extraction showed that turmeric rhizome ethanol extract (EV) and chloroform fraction (CF) were composed mainly of three curcuminoids and turmeric oil. Hexane fraction (HE) was composed mainly of turmeric oil while ethyl acetate fraction (EA) was composed mainly of three curcuminoids. The optimal TE-NPs formulation with particle size of 159.6 ± 1.7 nm and curcumin content of 357.48 ± 8.39 µM was successfully developed from 47-run D-optimal mixture–process variables experimental design. Three regression models of z-average, d50, and d90 could be developed with a reasonable accuracy of prediction (predicted r2 values were in the range of 0.9120–0.9992). An in vitro cytotoxicity study using MTT assay demonstrated that the optimal TE-NPs remarkably exhibited the higher cytotoxic effect on human hepatoma cells, HepG2, when compared with free curcumin. This study is the first to report nanoparticles prepared from turmeric rhizome extract and their cytotoxic activity to hepatic cancer cells compared with pure curcumin. These nanoparticles might serve as a potential delivery system for cancer therapy.  相似文献   

6.
In the present study, the chemical investigation of the bioactive fractions of the rhizomes of Zingiber officinale has resulted in the identification of twenty-nine compounds including one new compound, O-methyldehydrogingerol (1). Some of the isolates were subjected into the evaluation of their antiplatelet aggregation and vasorelaxing bioactivities. Among the tested compounds, [6]-gingerol (13) and [6]-shogaol (17) exhibited potent anti-platelet aggregation bioactivity. In addition, [10]-gingerol (15) inhibited the Ca2+-dependent contractions in high K+ medium. According to the results in the present research, the bioactivity of ginger could be related to the anti-platelet aggregation and vasorelaxing mechanism.  相似文献   

7.
The aim of this study was to optimize the grinding process parameters (mesh size of grinder sieve (X1), the peripheral velocity of the grinding wheels (X2)), and the storage time (X3) of ground ginger rhizome and nutmeg to obtain ethanol and ethanol-water extracts with improved antioxidant properties. The optimal conditions were estimated using response surface methodology (RSM) based on a three-variable Box–Behnken design (BBD) in order to maximize the antioxidant capacity (AC) determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, and the total phenolic content (TPC) was determined by the Folin–Ciocalteu (F–C) method in spice extracts. Additionally, the phenolic acid profiles in extracts from optimized conditions were analyzed using ultra-performance liquid chromatography (UPLC). It was found that the optimal preparation conditions for antioxidant extraction were dependent on the spice source and solvent type. The best antioxidant properties in nutmeg extracts were achieved for X1 = 1.0 mm, X2 = 40–41 Hz and X3 = 7 days, whereas the optimized parameters for ginger extracts were more varied (1.0–2.0 mm, 43–50 Hz and 1–9 days, respectively). The ginger extracts contained 1.5–1.8 times more phenolic acids, and vanillic, ferulic, gallic, and p-OH-benzoic acids were dominant. In contrast, the nutmeg extracts were rich in protocatechuic, vanillic, and ferulic acids.  相似文献   

8.
The prevention and treatment of skin diseases remains a major challenge in medicine. The search for natural active ingredients that can be used to prevent the development of the disease and complement treatment is on the rise. Natural extracts of ginger and hemp offer a wide range of bioactive compounds with potential health benefits. This study evaluates the effectiveness of hemp and ginger extract as a supportive treatment for skin diseases. It reports a synergistic effect of hemp and ginger extract. The contents of cannabinoids and components of ginger are determined, with the highest being CBD (587.17 ± 8.32 µg/g) and 6-gingerol (60.07 ± 0.40 µg/g). The minimum inhibitory concentration for Staphylococcus aureus (156.5 µg/mL), Escherichia coli (625.2 µg/mL) and Candida albicans (78.3 µg/mL) was also analyzed. Analysis of WM-266-4 cells revealed the greatest decrease in metabolic activity in cells exposed to the extract at a concentration of 1.00 µg/mL. Regarding the expression of genes associated with cellular processes, melanoma aggressiveness, resistance and cell survival, a significant difference was found in the expression of ABCB5, CAV1 and S100A9 compared with the control (cells not exposed to the extract).  相似文献   

9.
This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% (w/w) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395–480 nm wavelength range, with a power density of 3200 mW/cm2 and yield of 72 J/cm2. The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue® toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers, Candida albicans (ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit Candida albicans similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% (w/w) nano-titanium dioxide exerted the highest inhibitory effect on Candida albicans.  相似文献   

10.
Chemotherapeutic agent-induced nausea and vomiting are the severe adverse effects that are induced by their stimulations on the peripheral and/or central emetic nerve pathways. Even though ginger has been widely used as an herbal medicine to treat emesis, mechanisms underlying its neuronal actions are still less clear. The present study aimed to determine the chemotherapeutic agent vincristine-induced effect on gastroesophageal vagal afferent nerve endings and the potential inhibitory role of ginger constituent 6-shogaol on such response. Two-photon neuron imaging studies were performed in ex vivo gastroesophageal-vagal preparations from Pirt-GCaMP6 transgenic mice. Vincristine was applied to the gastroesophageal vagal afferent nerve endings, and the evoked calcium influxes in their intact nodose ganglion neuron somas were recorded. The responsive nodose neuron population was first characterized, and the inhibitory effects of 5-HT3 antagonist palonosetron, TRPA1 antagonist HC-030031, and ginger constituent 6-shogaol were then determined. Vincristine application at gastroesophageal vagal afferent nerve endings elicited intensive calcium influxes in a sub-population of vagal ganglion neurons. These neurons were characterized by their positive responses to P2X2/3 receptor agonist α,β-methylene ATP and TRPA1 agonist cinnamaldehyde, suggesting their nociceptive placodal nodose C-fiber neuron lineages. Pretreatment with TRPA1 selective blocker HC-030031 inhibited vincristine-induced calcium influxes in gastroesophageal nodose C-fiber neurons, indicating that TRPA1 played a functional role in mediating vincristine-induced activation response. Such inhibitory effect was comparable to that from 5-HT3 receptor antagonist palonosetron. Alternatively, pretreatment with ginger constituent 6-shogaol significantly attenuated vincristine-induced activation response. The present study provides new evidence that chemotherapeutic agent vincristine directly activates vagal nodose nociceptive C-fiber neurons at their peripheral nerve endings in the upper gastrointestinal tract. This activation response requires both TRPA1 and 5-HT3 receptors and can be attenuated by ginger constituent 6-shogaol.  相似文献   

11.
The goal of this study was to determine the optimal pretreatment process for the extraction of lipids and reducing sugars to facilitate the simultaneous production of biodiesel and bioethanol from the marine microalga Chorella sp. With a single pretreatment process, the optimal ultrasonication pretreatment process was 10 min at 47 KHz, and extraction yields of 6.5 and 7.1 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. The optimal microwave pretreatment process was 10 min at 2,450 MHz, and extraction yields of 6.6 and 7.0 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. Lastly, the optimal high-pressure homogenization pretreatment process was two cycles at a pressure of 20,000 psi, and extraction yields of 12.5 and 12.8 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. However, because the single pretreatment processes did not markedly improve the extraction yields compared to the results of previous studies, a combination of two pretreatment processes was applied. The yields of lipids and reducing sugars from the combined application of the high-pressure homogenization process and the microwave process were 24.4 and 24.9 % (w/w), respectively, which was up to three times greater than the yields obtained using the single pretreatment processes. Furthermore, the oleic acid content, which is a fatty acid suitable for biodiesel production, was 23.39 % of the fatty acids (w/w). The contents of glucose and xylose, which are among the fermentable sugars useful for bioethanol production, were 77.5 and 13.3 % (w/w) of the fermentable sugars, respectively, suggesting the possibility of simultaneously producing biodiesel and bioethanol. Based on the results of this study, the combined application of the high-pressure homogenization and microwave pretreatment processes is the optimal method to increase the extraction yields of lipids and reducing sugars that are essential for the simultaneous production of biodiesel and bioethanol.  相似文献   

12.
The determination of 6-, 8-, 10-gingerol, and 6-shogaol in dried ginger (Zingiber officinale) and in the dried aqueous extract of ginger is reported. This is the first study to report a validated method for the determination of these 4 analytes. Several extraction solvents and methods were examined, and the optimum combination was determined. The samples were extracted at room temperature by sonication with methanol, and the extract was analyzed by liquid chromatography with photodiode array detection. A C18 column was used with a water-acetonitrile gradient mobile phase. Quantification was at 200 nm. The levels of 6-, 8-, 10-gingerol, and 6-shogaol in the raw herb were 9.3, 1.6, 2.3, and 2.3 mglg, respectively. The levels of gingerols found in the dried aqueous extract were between 5 and 16 times lower than those in the raw herb, but the level of 6-shogaol was higher. Analyte identity was confirmed by negative-ion electrospray ionization tandem mass spectrometry, in which 2 daughter ions were obtained for each analyte. The average recovery was 97% with a relative standard deviation of <8%. The limits of detection for 6-, 8-, 10-gingerol, and 6-shogaol in the raw herb were 0.22, 0.04, 0.09, and 0.07 mglg, respectively, and in the dried aqueous extract, 0.11, 0.02, 0.02, and 0.14 mg/g, respectively.  相似文献   

13.
张文焕  刘平香  邱静  贾琪  钱永忠 《色谱》2019,37(10):1105-1111
建立了超高效液相色谱-串联质谱(UHPLC-MS/MS)快速同时测定生姜中姜辣素类和姜黄素类营养成分的分析方法,具体包括6-姜酚、8-姜酚、10-姜酚、6-姜烯酚、8-姜烯酚、10-姜烯酚、四氢姜黄素、姜黄素、去甲氧基姜黄素、双去甲氧基姜黄素10种目标物。采用ZORBAX RRHD Eclipse Plus C18色谱柱(100 mm×2.1 mm,1.8 μm)分离,以0.1%(v/v)甲酸水溶液和0.1%(v/v)甲酸甲醇溶液为流动相进行梯度洗脱,采用电喷雾电离(ESI)源、正离子和多反应监测(MRM)模式对目标物进行定性确证和定量分析。10种营养成分的线性相关系数(r)均≥ 0.9995,方法的定量限为0.10~7.71 μg/L,样品基质在3个水平下的平均加标回收率为82.8%~115.3%,相对标准偏差(RSD)为0.58%~11.49%。分析结果显示,生姜中10种营养成分均有检出,其中6-姜酚的含量最高且集中分布于373.35~702.48 mg/kg。该法简便快速,准确可靠,适用于生姜中姜辣素类和姜黄素类营养成分的分析,可为生姜质量鉴定和控制提供技术手段。  相似文献   

14.
In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280–320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.  相似文献   

15.
Perilla frutescens (L.) Britt. (Labiatae), a medicinal plant, has been widely used for the therapy of multiple diseases since about 1800 years ago. It has been demonstrated that the extracts of P. frutescens exert significant anti-inflammatory effects. In this research, two pairs of 7,7′-cyclolignan enantiomers, possessing a cyclobutane moiety, (+)/(−)-perfrancin [(+)/(−)-1] and (+)/(−)-magnosalin [(+)/(−)-2], were separated from P. frutescens leaves. The present study achieved the chiral separation and determined the absolute configuration of (±)-1 and (±)-2. Compounds (+)-1 and (−)-1 have notable anti-inflammatory effects by reducing the secretion of pro-inflammatory factors (NO, TNF-α and IL-6) and the expression of pro-inflammatory mediators (iNOS and COX-2). These findings indicate that cyclolignans are effective substances of P. frutescens with anti-inflammatory activity. The present study partially elucidates the mechanisms underlying the effects of P. frutescens.  相似文献   

16.
The rhizome of ginger (Zingiber officinale Roscoe) is known to have several bioactive compounds including gingerols and shogaols which possess beneficial health properties such as anti-inflammatory and chemopreventive effects. Based on recent observations that 6-shogaol may have more potent bioactivity than 6-gingerol, we obtained a 6-shogaol-rich extract from ginger and examined its effects on the nuclear factor E2-related factor2 (Nrf2)/antioxidant response element (ARE) pathway in vitro and in vivo. 6-Shogaol-rich extract was produced by extracting ginger powder with 95% ethanol at 80 °C after drying at 80 °C (GEE8080). GEE8080 contained over 6-fold more 6-shogaol compared to the room temperature extract (GEE80RT). In HepG2 cells, GEE8080 displayed much stronger inductions of ARE-reporter gene activity and Nrf2 expression than GEE80RT. GEE8080 stimulated phosphorylations of mitogen-activated protein kinases (MAPKs) such as ERK, JNK, and p38. Moreover, the GEE8080-induced expressions of Nrf2 and HO-1 were attenuated by treatments of SB202190 (a p38 specific inhibitor) and LY294002 (an Akt specific inhibitor). In a mouse model, the GEE8080 decreased the diethylnitrosamine (DEN)-mediated elevations of serum aspartate transaminase and alanine transaminase as well as the DEN-induced hepatic lipid peroxidation. Inductions of Nrf2 and HO-1 by GEE8080 were also confirmed in the mice. In addition, the administration of GEE8080 to the mice also restored the DEN-reduced activity and protein expression of hepatic antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. In conclusion, GEE8080, a 6-shogaol-rich ginger extract, may enhance antioxidant defense mechanism through the induction of Nrf2 and HO-1 regulated by p38 MAPK and PI3k/Akt pathway in vitro and in vivo.  相似文献   

17.
Curcumin is a hydrophobic polyphenol derived from turmeric with potent anti-oxidant, anti-microbial, anti-inflammatory and anti-carcinogenic effects. Curcumin is degraded into various derivatives under in vitro and in vivo conditions, and it appears that its degradation may be responsible for the pharmacological effects of curcumin. The primary risk factor for the cause of gastric cancer is Helicobacter pylori (H. pylori). A virulence factor vacuolating cytotoxic A (VacA) is secreted by H. pylori as a 88 kDa monomer (p88), which can be fragmented into a 33 kDa N-terminal domain (p33) and a 55 kDa C-terminal domain (p55). Recently it has been reported that curcumin oxidation is required to inhibit the activity of another major H.pylori toxin CagA. We performed molecular docking of curcumin and its oxidative derivatives with p33 and p55 domains of VacA. Further, we have examined the effect of the oxidation of curcumin on the vacuolation activity of VacA protein. We observed the binding of curcumin to the p55 domain of VacA at five different sites with moderate binding affinities. Curcumin did not bind to p33 domain of VacA. Remarkably, cyclobutyl cyclopentadione and dihydroxy cyclopentadione, which are oxidized products of curcumin, showed a higher binding affinity with VacA protein at all sites except one as compared to parent curcumin itself. However, cyclobutyl cyclopentadione showed a significant binding affinity for the active site 5 of the p55 protein. Active site five (312–422) of p55 domain of VacA plays a crucial role in VacA-mediated vacuole formation. Invitro experiments showed that curcumin inhibited the vacuolation activity of H. pylori in human gastric cell line AGS cells whereas acetyl and diacetyl curcumin, which cannot be oxidized, failed to inhibit the vacuolation in AGS cells after H. pylori infection. Here our data showed that oxidation is essential for the activity of curcumin in inhibiting the vacuolation activity of H. pylori. Synthesis of these oxidized curcumin derivatives could potentially provide new therapeutic drug molecules for inhibiting H. pylori-mediated pathogenesis.  相似文献   

18.
Lactobacillus bulgaricus is a LAB strain which is capable of producing bacteriocin substances to inhibit Staphylococcus aureus. The aim of this study was to purify a bacteriocin-like inhibitory substance (BLIS) produced by L. bulgaricus FTDC 1211 using an aqueous impregnated resins system consisting of polyethylene-glycol (PEG) impregnated on Amberlite XAD4. Important parameters influencing on purification of BLIS, such as the molecular weight and concentration of PEG, the concentration and pH of sodium citrate and the concentration of sodium chloride, were optimized using a response surface methodology. Under optimum conditions of 11% (w/w) of PEG 4000 impregnated Amberlite XAD4 resins and 2% (w/w) of sodium citrate at pH 6, the maximum purification factor (3.26) and recovery yield (82.69% ± 0.06) were obtained. These results demonstrate that AIRS could be used as an alternate purification system in the primary recovery step.  相似文献   

19.
Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.  相似文献   

20.
Curcumin is an anti-inflammatory and neuroprotective compound in turmeric. It is a potential ligand of the aryl hydrocarbon receptor (AhR) that mediates anti-inflammatory signaling. However, the AhR-mediated anti-inflammatory effect of curcumin within the brain remains unclear. We investigated the role of AhR on the curcumin effect in inflammatory astrogliosis. Curcumin attenuated lipopolysaccharide (LPS)-induced proinflammatory IL-6 and TNF-α gene expression in primary cultured rat astrocytes. When AhR was knocked down, LPS-induced IL-6 and TNF-α were increased and curcumin-decreased activation of the inflammation mediator NF-κB p65 by LPS was abolished. Although LPS increased AhR and its target gene CYP1B1, curcumin further enhanced LPS-induced CYP1B1 and indoleamine 2,3-dioxygenase (IDO), which metabolizes tryptophan to AhR ligands kynurenine (KYN) and kynurenic acid (KYNA). Potential interactions between curcumin and human AhR analyzed by molecular modeling of ligand–receptor docking. We identified a new ligand binding site on AhR different from the classical 2,3,7,8-tetrachlorodibenzo-p-dioxin site. Curcumin docked onto the classical binding site, whereas KYN and KYNA occupied the novel one. Moreover, curcumin and KYNA collaboratively bound onto AhR during molecular docking, potentially resulting in synergistic effects influencing AhR activation. Curcumin may enhance the inflammation-induced IDO/KYN axis and allosterically regulate endogenous ligand binding to AhR, facilitating AhR activation to regulate inflammatory astrogliosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号