首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The kinetics and mechanism of cure reaction of DGEBA using a chelate of Ni(II) with diethylenetriamine (dien), Ni(dien)2I2, as a curing agent was studied by DSC. TG curve of the complex curing agent showed mass loss in two region of temperature: 200–320 and 450–550 °C. Dynamic DSC measurements showed only one exothermic peak with a maximum about 250 °C depending on the heating rate. According to the methods of KAS and Ozawa–Flynn–Wall the values of E a were 92.5 and 96.2 kJ/mol, respectively. The isoconversional kinetic analysis in whole range of conversion, α = 0.02–0.95, showed small changes in the E a values in the region of α = 0.04–0.6 and most likely represent some average values (E a = 110 kJ/mol) between the values of E a of non-autocatalyzed and autocatalyzed reactions. Using the sole dependence of E a on α, the time required to reach fully cured materials under isothermal conditions were also predicted and compared with the experimental results.  相似文献   

2.
The methods of isothermal and dynamic thermogravimetry have been used to study the degradation of poly(N-vinylcarbazole) (PNVC). The multiple heating rate method has been used, as a dynamic method, to obtain kinetic parameters. A linear relationship between the activation energy. E, and Mw?1 (Mw being weight average molecular weight) was found. From isothermal experiments, a temperature was found for which E was independent of molecular weight. We could then refer to a degradation characteristic- temperature of the polymer. On the other hand, altering the heating rate leads to changes in the values of E for each molecular weight indicating two kinds of scission: one occurs in the backbone, producing mainly monomer; in the other, both side-group and backbone scissions occur producing different products.  相似文献   

3.
The overall activation energy of the thermal degradation of polyisobutylene has been measured using factor-jump thermogravimetry to be 206±1 kJ/mole over the range 365 to 405° in N2 at 800 mm Hg pressure and flowing at 4 mm/s over the sample. This is consistent with some values reported for thermal degradation in vacuum and in solution. In 5 mm Hg of N2, an apparent activation energy of 218±2 kJ/mole was found, and in vacuum the apparent activation energy is 238±13 kJ/mole. Troublesome bubbling made the vacuum values difficult to measure. Substitution of reasonable values for the activation energies of initiation,E i , termination,E t , and the activation energy,E a , for vacuum degradation in the equationE a =E i /2E d -E t /2 yields an activation energy Ed=84 kJ/mole for the unzipping reaction. This equation presupposes a degradation mechanism of random initiation, unzipping, and bimolecular termination. Substitution of reasonable values for the heat of polymerization, ΔH, in the definition ΔH=E p ?e d suggests that the activation energy of the polymerization reaction at 375° is approximately 30 kJ/mole.  相似文献   

4.
Isothermal microcalorimetry can be used to investigate the thermokinetic parameters for reactive mechanisms. Benzoyl peroxide (BPO), a typical organic peroxide, undergoes an autocatalytic reaction under isothermal decomposition. It requires intrinsically safer design of preparation, manufacturing, transportation, storage, and even disposal. The scope of this study was to describe the exothermic reaction and reaction model of BPO and mixed with benzoic acid by the thermal activity monitor III (TAM III). The results showed the isothermal kinetic parameters, such as activation energy (E a), frequency factor (A), heat of decomposition (ΔH d), and time to maximum rate under isothermal conditions (TMR iso), which were necessary and useful to insure safe storage or transportation for self-reactive substances applied in the process industries.  相似文献   

5.
The kinetics of pyrolysis of a micro-crystalline cellulose in nitrogen were studied from TGA and DTG data, obtained with two different modes of heating: a dynamic mode at constant heating rates between 1 and 11 °C/min and an isothermal mode at various temperatures, kept constant between 280 and 320 °C. In isothermal mode, it appeared very clearly that the mass depletion shows a sigmoid profile characteristic of an auto-accelerated reaction process. This behaviour is consistent with kinetics of nuclei-growth, well represented by the models of Avrami-Erofeev (A-E) and of Prout-Tompkins (P-T) type. All the other kinetic models commonly applied to the thermal decomposition of solids revealed unsatisfactory. The TGA and DTG data were, thus, found ideally simulated from a reaction scheme consisting in two parallel reactions, termed 1 and 2, each one described by the kinetic law: dx/dt=−AE/RTxn(1−0.99x)m. Reaction 1 is related to the bulk decomposition of cellulose and is characterised by the set of parameters: E1=202 kJ/mol; n1=1; m1=0.48. Reaction 2 is related to the slower residual decomposition, which takes place over approximately 350 °C and affects only 16% by weight of the raw cellulose. With m2 constrained to 1, the optimised parameters of this reaction were: E2=255 kJ/mol; n2=22. Finally, the proposed model allowed to correctly fit not less than to 10 sets of ATG-DTG data, isothermal and dynamic.  相似文献   

6.
The influence of both light and heat on the stability of nitrofurazone aqueous solution was studied. Results show that in either heating experiments or the exposure to light at high temperatures, the degradation rate obeyed zero-order kinetics. The total rate constant ktotal caused by both light and heat can be divided into two parts: ktotal =kdark klight, where kdark and klight are the degradation rate constants caused by heat and light, respectively. The klight can be expressed as klight=Alight*exp(-Ea,light/RT)*E, where E is the illuminance of light, and Alight and Ea,light both are experimental constants. The values of these kinetic parameters were determined based on the experiments in the dark and upon exposure to three different light sources. Results show that the values of Alight and Ea, light varied with the light source. To save time, labor, and drugs, exponential heating experiments were employed and compared with the isothermal experiments. Results indicated that kinetic parameters obtained by exponential heating experiments are comparable to those obtained by isothermal experiments either in the dark or upon exposure to light.  相似文献   

7.
The thermooxidative degradation of four well known polymers, polyethylene (PE), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA), was carried out in a thermogravimetric (TG) analyser, at various temperatures (in the 473–533 K range), in isothermal heating conditions. The resulting set of experimental TG data was used to determine the apparent activation energy (Ea) of degradation through two isothermal literature methods, as well as through a very simple method we set up, based on the direct regression of the experimental mass loss data, in order to verify the general applicability of our method to various polymers. The results from different methods were in good agreement. Degradation experiments in dynamic heating conditions, which were also performed, gave Ea values in good agreement with those in isothermal heating conditions for PS, PC and PMMA, while for PE a large discrepancy was observed, which was discussed and interpreted. The results suggested the general applicability of our method to all polymers, independently on their structure and degradation mechanism. A long-term (about 13 months) isothermal degradation experiment was also carried out with the same polymers at relatively low temperature (423 K). Only PE and PS evidenced appreciable mass loss in the investigated period, but the experimental data were not in agreement with those from the short-term degradations at higher temperatures, thus suggesting different degradation kinetics, and a low reliability of the lifetime predictions for polymers in service based on experiments at higher temperatures.  相似文献   

8.
The thermal and kinetic studies of epoxidized natural rubber (ENR) and its polymer electrolytes, LiX/ENR PEs, (where X = ClO 4 ? , CF3SO 3 ? , COOCF 3 ? , I?, and BF 4 ? ) were carried out using thermogravimetric analysis at different heating rates. The thermal behaviors for LiX/ENR PEs are closely related to the morphology and interactions between the LiX and ENR chains. The LiCF3SO3, LiCOOCF3, and LiI form pseudo-crosslinking within the ENR; their thermal behavior resembled purified ENR. The LiClO4 tends to form aggregates within the ENR. This phenomenon has promoted a much earlier decomposition of epoxide in the ENR. The occurrence of ring-opening and complexation or cross-linking reactions in and between the ENR chains in the LiBF4/ENR has produced a thermally stable macrostructure. The activation energy for the thermal degradation (E d) of purified ENR was 239.8 and 239.9 kJ mol?1 using Kissinger and FWO methods, respectively. According to the Coats–Redfern method, the degradation mechanism of purified ENR follows the F1 type model, while the Criado method revealed that the degradation starts with F1 followed by D3 type models. The E d for LiX/ENR (X = COOCF 3 ? , CF3SO 3 ? , I?, and BF 4 ? ) PE’s obtained via the Kissinger method are 258.5, 257.0, 251.0, and 198.9 kJ mol?1, respectively, and the corresponding E d values obtained by FWO are 236.0, 223.6, 349.7, and 206.6 kJ mol?1, respectively. The degradation of ENR in these PEs followed the D3 type model. However, for LiClO4/ENR, the presence of two distinct degradations of ENR gave two E d values. These are 174.5 and 234.7 kJ mol?1 using Kissinger and 117.8 and 293.6 kJ mol?1 using FWO method. The degradation mechanism of ENR in the LiClO4/ENR PE was similar to purified ENR that is F1 followed by D3 type models.  相似文献   

9.
In this work, a kinetic study on the thermal degradation of carbon fibre reinforced epoxy is presented. The degradation is investigated by means of dynamic thermogravimetric analysis (TG) in air and inert atmosphere at heating rates from 0.5 to 20°C min−1 . Curves obtained by TG in air are quite different from those obtained in nitrogen. A three-step loss is observed during dynamic TG in air while mass loss proceeded as a two step process in nitrogen at fast heating rate. To elucidate this difference, a kinetic analysis is carried on. A kinetic model described by the Kissinger method or by the Ozawa method gives the kinetic parameters of the composite decomposition. Apparent activation energy calculated by Kissinger method in oxidative atmosphere for each step is between 40–50 kJ mol−1 upper than E a calculated in inert atmosphere. The thermo-oxidative degradation illustrated by Ozawa method shows a stable apparent activation energy (E a ≈130 kJ mol−1 ) even though the thermal degradation in nitrogen flow presents a maximum E a for 15% mass loss (E a ≈60 kJ mol−1 ). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, the thermal behavior in terms of glass transition (T g), degradation, and thermal stability of four commercial new-generation posterior bulk fill composites (Surefill SDR, Dentsply; Quixfill, Dentsply; Xtrabase, Voco; and Xtrafill, Voco) activated by light-emitting diodes (LEDs) was analyzed by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The activation energies (E a) for the decomposition of the dental resins were calculated based on the Kissinger and Doyle kinetic models from the peaks of the endothermic curves obtained when the specimens were heated at four different temperatures (5, 10, 15, and 20 °C min?1) during DSC. The results show that the Xtrabase composite displayed the highest T g (120 °C at a 5 °C min?1 heating rate) and E a (157.64 kJ mol?1) values associated with thermal degradation from the main chain of the polymer.  相似文献   

12.
In the present work, the thermal decomposition of glimepiride (sulfonylurea hypoglycemic agent) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). Isothermal and non-isothermal methods were employed to determine kinetic data of decomposition process. The physical chemical properties and compatibilities of several commonly used pharmaceutical excipients (glycolate starch, microcrystalline cellulose, stearate, lactose and Plasdone®) with glimepiride were evaluated using thermoanalytical methods. The 1:1 physical mixtures of these excipients with glimepiride showed physical interaction of the drug with Mg stearate, lactose and Plasdone®. On the other hand, IR results did not evidence any chemical modifications. From isothermal experiments, activation energy (E a) can be obtained from slope of lnt vs. 1/T at a constant conversion level. The average value of this energy was 123 kJ mol–1. For non-isothermal method E a can be obtained from plot of logarithms of heating rates, as a function of inverse of temperature, resulting a value of 157 and 150 kJ mol–1, respectively, in air and N2 atmosphere, from the first stage of thermal decomposition.  相似文献   

13.
Using the thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O as a basis, the paper presents results which show how computed values of kinetic parameters are influenced by experimental conditions (ambient atmosphere, sample mass, linear heating rate) when using the non-isothermal methods and the Coats-Redfern (CR) modified equation. It also illustrates the influence of the experimental methods i.e. non-isothermal and isothermal (conventional) methods and also a quasiisothermal-isobaric one which can be recognised as equivalent to Constant Rate Thermal Analysis (CRTA). The results obtained have confirmed the significant influence of the experimental parameters as well as that of the experimental method used on the estimated values of kinetic parameters. The correlation between activation energy (E) and sample mass (m) or heating rate (β) is generally of a linear nature:E=a+bx  相似文献   

14.
The thermal decomposition behaviors of styrene?C(ethylene butylene)?Cstyrene (SEBS) thermoplastic elastomer filled with liquid crystalline polymer (LCP), organomontmorillonite (OMMT), and carbon nanotube (CNT) as a heat stabilizing filler, were comparatively investigated using nonisothermal- and isothermal-thermogravimetric analyses in air. The isoconversional method was employed to evaluate the kinetic parameters (E a, lnA, and n) under dynamic heating. For neat samples, OMMT and CNT exhibited their respective lowest and highest thermal stabilities as revealed from the lowest and the highest T onset values, respectively. The decomposition rates of the composites containing OMMT at the temperature >250?°C were higher than those containing CNT and LCP, respectively, whereas the elastomer matrix degraded with the highest rate. The obtained TG profiles and calculated kinetic parameters indicated that the incorporation of LCP, OMMT, and CNT into elastomer matrix improved the thermal stability. Especially, the CNT- and OMMT-containing composites significantly improved the thermal stability compared with the neat matrix polymer. Simultaneously recorded DSC thermograms revealed that the degradation processes for the neat polymers and their composites were exothermic in air. From the simultaneously recorded DSC data, the enthalpy of thermal decomposition for each composite system was found to be lower than that of the neat matrix and mostly decreasing with increasing filler loading. The isothermal decomposition stabilities of the neat SEBS and its composites containing the different fillers were in agreement with those of the nonisothermal investigation.  相似文献   

15.
The isothermal degradation of three aromatic polyetherketones was studied in an inert environment at various temperatures in the range 683-803 K. In the first degradation stage (mass loss D£20%) a linear increase of D as a function of heating time (t) was observed and the corresponding kinetic D=D o+bt equations at various temperatures were directly drawn by smoothing the experimental TG data. The b values, which represent the mass loss rates during degradation, increased as a function of temperature according to Arrhenius-type equations, from which degradation E a values were determined, which appear in agreement with those from literature methods. Some differences observed were discussed and interpreted. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The degradation behaviour of an epoxy system containing both tetraglycidyl-4-4′-diami-nodiphenylmethane (TGDDM) and a multifunctional novolac glycidyl ether resins, which are cured with 4,4′-diaminodiphenylsulphone (DDS) has been studied using thermogravimetric technique (TG). Isothermal and non-isothermal (dynamic) methods were used to determine the kinetic parameters of this system. An isothermal method and five dynamic methods reported in the literature were used to determine the activation energies of the system. Kissinger’s method only requires knowledge of the temperature at which the rate of weight loss is at maximum to calculate the activation energy. The Flynn-Wall-Ozawa method provides the activation energy without any assumption about the reaction order while the other three methods (Coats and Redfern, Horowitz and Metzger and Van Krevelen et al.) require a prior knowledge of the mechanism of degradation for this system to calculate the kinetic parameters. The results obtained by applying these different methods agreed well. In fact, the values of the activation energies provided by the six methods have shown excellent agreement when the degradation behaviour of this system was assumed to be of the deceleratory rate type. The kinetic parameters have been used to estimate the half-life of this system in two different ways.  相似文献   

17.
The curing process of diglycidyl ether of bisphenol A (DGEBA)–isophoronediamine (IPDA) system filled with different contents of Fe nanoparticles (nano-Fe) has been investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy analysis in order to understand the effect of nano-Fe. These studies revealed that high percentage of the nanofiller, i.e. 10 %, results in improved epoxy matrix as evidenced by increasing in the reaction heat and conversion degree. Kinetics of DGEBA/IPDA/10 % nano-Fe cure was studied by calorimetry measurements at isothermal mode. Isothermal kinetic parameters, including k 1, k 2, m, and n were determined and it was shown that the reaction kinetics could be expressed well by dα/dt = (k 1 + k 2 α m)(1?α)n which called Kamal model. The results also showed that the diffusion control does not occur. The excellent fitting Kamal model with experimental data at the end of the isothermal cure process could be mentioned as evidences here. The dispersion of 10 % nano-Fe into epoxy matrix was analyzed by atomic force microscopy observations.  相似文献   

18.
A long-term(about nine months) isothermal degradation experiment of two different commercial polylactide(PLA) samples used for food packaging was carried out at a relatively low temperature(423 K). Thermooxidative degradations of the same polymers were carried out in a thermogravimetric(TG) analyser, at higher temperatures(453 K ≤ T ≤ 523 K), under isothermal heating conditions. The obtained set of experimental TG data was used to determine the apparent activation energy(Ea) of degradation through two isothermal kinetic methods. The results from long-term experiment evidenced considerable mass loss for both PLA samples in the investigated period, but the experimental data were not in agreement with those from the short-term degradations at higher temperatures, thus suggesting a different degradation kinetics, and, then a low reliability of the lifetime predictions for polymers in service or degradation forecasts for the end of their life based on experiments at higher temperatures.  相似文献   

19.
This paper reports TL glow curve analysis and evaluation of kinetic parameter for Amarnath stone collected from Amarnath Holy Cave. TL was recorded with different heating rates (3.3, 4, 6.7, 8, and 10 ° s?1). The samples gave good TL peaks at 310, 314, 308, 323, and 327 °C for the different heating rates. The corresponding activation energy (E) values were calculated. The peaks were indicative of second-order kinetics. Samples were characterized by XRD analysis. Inductively coupled plasma activated emission spectroscopic (ICP–AES) analysis was performed to determine percentages of elements in the natural mineral. Results from ICP–AES and XRF (X-ray fluorescence spectroscopy) studies were compared.  相似文献   

20.
Interaction of ammonia with H-MCM-22 zeolite (Si/Al = 24.5) was investigated by temperature-programmed desorption technique in order to obtain information on thermodynamics of the process. Average activation energy for desorption of ammonia from Brønsted acid sites of H-MCM-22 zeolite was estimated from the data obtained under conditions varying in heating rate and also flow rate of carrier gas. It resulted in value of E d = 127 kJ mol?1 for heat rate variation method, whereas flow rate variation led to E d value of 111 kJ mol?1. Obtained E d values are compared with those reported in the literature for other zeolitic materials and discussed in the broader context of zeolite acidity. Comparison of E d values estimated here for H-MCM-22 zeolite with corresponding data for other protonic zeolites shows that H-MCM-22 displays mediocre/lower activation energy for ammonia compared with other high-silica zeolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号