首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The estimate of the parameters which define a conventional multiobjective decision making model is a difficult task. Normally they are either given by the Decision Maker who has imprecise information and/or expresses his considerations subjectively, or by statistical inference from the past data and their stability is doubtful. Therefore, it is reasonable to construct a model reflecting imprecise data or ambiguity in terms of fuzzy sets and several fuzzy approaches to multiobjective programming have been developed 1, 9, 10, 11. The fuzziness of the parameters gives rise to a problem whose solution will also be fuzzy, see 2, 3, and which is defined by its possibility distribution. Once the possibility distribution of the solution has been obtained, if the decision maker wants more precise information with respect to the decision vector, then we can pose and solve a new problem. In this case we try to find a decision vector, which approximates as much as possible the fuzzy objectives to the fuzzy solution previously obtained. In order to solve this problem we shall develop two different models from the initial solution and based on Goal Programming: an Interval Goal Programming Problem if we define the relation “as accurate as possible” based on the expected intervals of fuzzy numbers, as we showed in [4], and an ordinary Goal Programming based on the expected values of the fuzzy numbers that defined the goals. Finally, we construct algorithms that implement the above mentioned solution method. Our approach will be illustrated by means of a numerical example.  相似文献   

2.
Real decision problems usually consider several objectives that have parameters which are often given by the decision maker in an imprecise way. It is possible to handle these kinds of problems through multiple criteria models in terms of possibility theory.Here we propose a method for solving these kinds of models through a fuzzy compromise programming approach.To formulate a fuzzy compromise programming problem from a possibilistic multiobjective linear programming problem the fuzzy ideal solution concept is introduced. This concept is based on soft preference and indifference relationships and on canonical representation of fuzzy numbers by means of their α-cuts. The accuracy between the ideal solution and the objective values is evaluated handling the fuzzy parameters through their expected intervals and a definition of discrepancy between intervals is introduced in our analysis.  相似文献   

3.
In conventional multiobjective decision making problems, the estimation of the parameters of the model is often a problematic task. Normally they are either given by the decision maker (DM), who has imprecise information and/or expresses his considerations subjectively, or by statistical inference from past data and their stability is doubtful. Therefore, it is reasonable to construct a model reflecting imprecise data or ambiguity in terms of fuzzy sets for which a lot of fuzzy approaches to multiobjective programming have been developed. In this paper we propose a method to solve a multiobjective linear programming problem involving fuzzy parameters (FP-MOLP), whose possibility distributions are given by fuzzy numbers, estimated from the information provided by the DM. As the parameters, intervening in the model, are fuzzy the solutions will be also fuzzy. We propose a new Pareto Optimal Solution concept for fuzzy multiobjective programming problems. It is based on the extension principle and the joint possibility distribution of the fuzzy parameters of the problem. The method relies on α-cuts of the fuzzy solution to generate its possibility distributions. These ideas are illustrated with a numerical example.  相似文献   

4.
Multi-attribute decision-making is usually concerned with weighting alternatives, thereby requiring weight information for decision attributes from a decision maker. However, the assignment of an attribute’s weight is sometimes difficult, and may vary from one decision maker to another. Additionally, imprecision and vagueness may affect each judgment in the decision-making process. That is, in a real application, various statistical data may be imprecise or linguistically as well as numerically vague. Given this coexistence of random and fuzzy information, the data cannot be adequately treated by simply using the formalism of random variables. To address this problem, fuzzy random variables are introduced as an integral component of regression models. Thus, in this paper, we proposed a fuzzy random multi-attribute evaluation model with confidence intervals using expectations and variances of fuzzy random variables. The proposed model is applied to oil palm fruit grading, as the quality inspection process for fruits requires a method to ensure product quality. We include simulation results and highlight the advantage of the proposed method in handling the existence of fuzzy random information.  相似文献   

5.
This paper studies the dynamic pricing problem of selling fixed stock of perishable items over a finite horizon, where the decision maker does not have the necessary historic data to estimate the distribution of uncertain demand, but has imprecise information about the quantity demand. We model this uncertainty using fuzzy variables. The dynamic pricing problem based on credibility theory is formulated using three fuzzy programming models, viz.: the fuzzy expected revenue maximization model, α‐optimistic revenue maximization model, and credibility maximization model. Fuzzy simulations for functions with fuzzy parameters are given and embedded into a genetic algorithm to design a hybrid intelligent algorithm to solve these three models. Finally, a real‐world example is presented to highlight the effectiveness of the developed model and algorithm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Recently, genetic algorithms (GAs), a new learning paradigm that models a natural evolution mechanism, have received a great deal of attention regarding their potential as optimization techniques for solving combinatorial optimization problems. In this paper, we focus on multiobjective 0–1 programming problems as a generalization of the traditional single objective ones. By considering the imprecise nature of human judgements, we assume that the decision maker may have fuzzy goal for each of the objective functions. After eliciting the linear membership functions through the interaction with the decision maker, we adopt the fuzzy decision of Bellman and Zadeh or minimum-operator for combining them. In order to investigate the applicability of the conventional GAs for the solution of the formulated problems, a lot of numerical simulations are performed by assuming several genetic operators. Then, instead of using the penalty function for treating the constraints, we propose three types of revised GAs which generate only feasible solutions. Illustrative numerical examples demonstrate both feasibility and efficiency of the proposed methods.  相似文献   

7.
The main objective is to present a framework for analysing decisions under risk. The nature of much information available to decision makers is vague and imprecise, be it information for human managers in organisations or for process agents in a distributed computer environment. Some approaches address the problem of uncertainty, but many of them concentrate more on representation and less on evaluation. The emphasis in this paper is on evaluation and even though the representation used is that of probability theory, other well-established formalisms can be used. The approach allows the decision maker to be as deliberately imprecise as he feels is natural and provides him with the means for expressing varying degrees of imprecision in the input sentences. The framework we present is intended to be tolerant and to provide means for evaluating decision situations using several decision rules beside the conventional maximisation of the expected utility.  相似文献   

8.
This paper is devoted to a multicriteria analysis of the consumer's behavior when the decision maker is acting in a fuzzy space and manifesting an imprecise attitude. At first, the process of decision making is described with the help of three relationships between the set of goods which are supplied in several locations, the set of their characteristics and the set of the consumer's a priori possible behaviors. All these relations are fuzzy. The model applies the theory of fuzzy relations equations. Then, the stages of the decision process are analyzed. Often fuzzy behavior relations are like ‘black boxes’. The mathematical solution of the model indicates in which conditions their valuations are possible. The main interest of this method is not to use additive operations on subjective items and to use operators which are coherent with the fuzzy nature of the variables.  相似文献   

9.
The problem of finding a solution to a multiple objective linear fractional program arises in several real world situations.In this paper we advocate that fuzzy sets theory provides a basis for solving this problem with sufficient consistency and rigorousness.After representing imprecise aspirations of the decision maker by structured linguistic variables or converting the original problem via approximations or change of variables into a multiple objective linear program, techniques of fuzzy linear programming may be used to reach a satisfactory solution.It is shown that under reasonable restrictions, this solution is efficient (Pareto optimal) for the original problem. Numerical examples are also included for illustration.  相似文献   

10.
This paper describes the use of fuzzy set theory in goal programming (GP) problems. In particular, it is demonstrated how fuzzy or imprecise aspirations of the decision maker (DM) can be quantified through the use of piecewise linear and continuous functions. Models are then presented for the use of fuzzy goal programming with preemptive priorities, with Archimedean weights, and with the maximization of the membership function corresponding to the minimum goal. Examples are also provided.  相似文献   

11.
Fuzzy optimization models are used to derive crisp weights (priority vectors) for the fuzzy analytic hierarchy process (AHP) based multicriteria decision making systems. These optimization models deal with the imprecise judgements of decision makers by formulating the optimization problem as the system of constrained non linear equations. Firstly, a Genetic Algorithm based heuristic solution for this optimization problem is implemented in this paper. It has been found that the crisp weights derived from this solution for fuzzy-AHP system, sometimes lead to less consistent or inconsistent solutions. To deal with this problem, we have proposed a consistency based constraint for the optimization models. A decision maker can set the consistency threshold value and if the solution exists for that threshold value then crisp weights can be derived, otherwise it can be concluded that the fuzzy comparison matrix for AHP is not consistent for the given threshold. Three examples are considered to demonstrate the effectiveness of the proposed method. Results with the proposed constraint based fuzzy optimization model are more consistent than the existing optimization models.  相似文献   

12.
In this paper, an Economic Production Quantity (EPQ) model is developed with flexibility and reliability consideration of production process in an imprecise and uncertain mixed environment. The model has incorporated fuzzy random demand, an imprecise production preparation time and shortage. Here, the setup cost and the reliability of the production process along with the backorder replenishment time and production run period are the decision variables. Due to fuzzy-randomness of the demand, expected average demand is a fuzzy quantity and also imprecise preparation time is represented by fuzzy number. Therefore, both are first transformed to a corresponding interval number and then using the interval arithmetic, the single objective function for expected profit over the time cycle is changed to respective multi-objective functions. Due to highly nonlinearity of the expected profit functions it is optimized using a multi-objective genetic algorithm (MOGA). The associated profit maximization problem is illustrated by numerical examples and also its sensitivity analysis is carried out.  相似文献   

13.
This paper discusses the issue of how to use fuzzy targets in the target-based model for decision making under uncertainty. After introducing a target-based interpretation of the expected value on which it is shown that this model implicitly assumes a neutral behavior on attitude about the target, we examine the issue of using fuzzy targets considering different attitudes about the target selection of the decision maker. We also discuss the problem for situations on which the decision maker’s attitude about target may change according to different states of nature. Especially, it is shown that the target-based approach can provide an unified way for solving the problem of fuzzy decision making with uncertainty about the state of nature and imprecision about payoffs. Several numerical examples are given for illustration of the discussed issues.  相似文献   

14.
For decision making problems involving uncertainty, both stochastic programming as an optimization method based on the theory of probability and fuzzy programming representing the ambiguity by fuzzy concept have been developing in various ways. In this paper, we focus on multiobjective linear programming problems with random variable coefficients in objective functions and/or constraints. For such problems, as a fusion of these two approaches, after incorporating fuzzy goals of the decision maker for the objective functions, we propose an interactive fuzzy satisficing method for the expectation model to derive a satisficing solution for the decision maker. An illustrative numerical example is provided to demonstrate the feasibility of the proposed method.  相似文献   

15.
In this paper, we focus on multiobjective nonconvex nonlinear programming problems and present an interactive fuzzy satisficing method through floating point genetic algorithms. After determining the fuzzy goals of the decision maker, if the decision maker specifies the reference membership values, the corresponding Pareto optimal solution can be obtained by solving the augmented minimax problems for which the floating point genetic algorithm, called GENOCOP III, is applicable. In order to overcome the drawbacks of GENOCOP III, we propose the revised GENOCOP III by introducing a method for generating an initial feasible point and a bisection method for generating a new feasible point efficiently. Then an interactive fuzzy satisficing method for deriving a satisficing solution for the decision maker efficiently from a Pareto optimal solution set is presented together with an illustrative numerical example.  相似文献   

16.
本文用模糊集理论中的隶属函数描述多层线性规划的各层目标,在第一层给定最小满意水平下,通过求解相应层次的模糊规划来确定各层的最小满意度,从而最终得到问题的一个满意解。提出的方法只需求解一系列线性规划问题,具有较好的计算复杂性和可行性,最后的算例进一步验证了方法的有效性。  相似文献   

17.
Normally, the real-world inventory control problems are imprecisely defined and human interventions are often required to solve these decision-making problems. In this paper, a realistic inventory model with imprecise demand, lead-time and inventory costs have been formulated and an inventory policy is proposed to minimize the cost using man–machine interaction. Here, demand increases with time at a decreasing rate. The imprecise parameters of lead-time, inventory costs and demand are expressed through linear/non-linear membership functions. These are represented by different types of membership functions, linear or quadratic, depending upon the prevailing supply condition and marketing environment. The imprecise parameters are first transformed into corresponding interval numbers and then following the interval mathematics, the objective function for average cost is changed into respective multi-objective functions. These functions are minimized and solved for a Pareto-optimum solution by interactive fuzzy decision-making procedure. This process leads to man–machine interaction for optimum and appropriate decision acceptable to the decision maker’s firm. The model is illustrated numerically and the results are presented in tabular forms.  相似文献   

18.
In this paper we study the model of decision under uncertainty consistent with confidence preferences. In that model, a decision maker held beliefs represented by a fuzzy set of priors and tastes captured by a standard affine utility index on consequences. First, we find some interesting properties concerning the well-known maxmin expected utility model, taking into account the point of view of the confidence preferences model. Further, we provide new examples of preferences that capture ambiguity-averse attitudes weaker than ambiguity attitudes featured by maxmin expected utility theory. Finally, we discuss the axiomatic foundations for the confidence preferences model with optimistic behavior.  相似文献   

19.
Based on decision-theoretic rough sets (DTRS), we augment the existing model by introducing into the granular values. More specifically, we generalize a concept of the precise value of loss function to triangular fuzzy decision-theoretic rough sets (TFDTRS). Firstly, ranking the expected loss with triangular fuzzy number is analyzed. In light of Bayesian decision procedure, we calculate three thresholds and derive decision rules. The relationship between the values of the thresholds and the risk attitude index of decision maker presented in the ranking function is analyzed. With the aid of multiple attribute group decision making, we design an algorithm to determine the values of losses used in TFDTRS. It is achieved with the use of particle swarm optimization. Our study provides a solution in the aspect of determining the value of loss function of DTRS and extends its range of applications. Finally, an example is presented to elaborate on the performance of the TFDTRS model.  相似文献   

20.
在大群体决策中,针对每一个决策者都有一个关于决策方案的模糊偏好关系的决策问题,提出了一种基于冲突的模糊偏好关系大群体决策方法。该方法首先考虑了复杂大群体的偏好差异,对决策者偏好进行聚类分析,形成不同的聚集,然后通过熵权法确定聚集的权重,集结成大群体模糊偏好关系,再对聚集内及聚集间进行冲突分析,通过一个迭代算子进行冲突消解,以达到一定冲突范围内的群体模糊偏好关系。最后通过一个算例说明了方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号