首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Naphthodianthrones such as fagopyrin and hypericin found mainly in buckwheat (Fagopyrum spp.) and St. John’s wort (SJW) (Hypericum perforatum L.) are natural photosensitizers inside the cell. The effect of photosensitizers was studied under dark conditions on growth, morphogenesis and induction of death in Saccharomyces cerevisiae. Fagopyrin and hypericin induced a biphasic and triphasic dose response in cellular growth, respectively, over a 10-fold concentration change. In fagopyrin-treated cells, disruptions in the normal cell cycle progression were evident by microscopy. DAPI staining revealed several cells that underwent premature mitosis without budding, a striking morphological abnormality. Flow Cytometric (FC) analysis using a concentration of 100 µM showed reduced cell viability by 41% in fagopyrin-treated cells and by 15% in hypericin-treated cells. FC revealed the development of a secondary population of G1 cells in photosensitizer-treated cultures characterized by small size and dense structures. Further, we show that fagopyrin and the closely related hypericin altered the shape and the associated fluorescence of biofilm-like structures. Colonies grown on solid medium containing photosensitizer had restricted growth, while cell-to-cell adherence within the colony was also affected. In conclusion, the photosensitizers under dark conditions affected culture growth, caused toxicity, and disrupted multicellular growth, albeit with different efficiencies.  相似文献   

2.
The crystals of 5,5′-dibromo-3-diethylaminomethyl-2,2′-biphenol N-oxide were studied by X-ray and FT-IR spectroscopy. Within this molecule two short OHO intramolecular hydrogen bonds are formed. The NO?H+?O bond between the OH and the N-oxide groups is very strong, of 2.419(7) Å between the oxygen atoms. The proton potential of this hydrogen bond is flat, broad and has probably no barrier—consequently it could not be located from X-ray diffraction data. The other hydrogen bond formed between two hydroxyl groups appears asymmetrical from FT-IR spectra, and shows also relatively limited proton polarizability. The molecular conformation is non-planar, due to strong overcrowding effect between the oxygen atoms involved in the hydrogen bonds.  相似文献   

3.
The general conformational properties and electronic structure of (carboxy-alkenyl)-phosphonic derivatives were determined at RHF/STO-3G* level. In all the series, low rotation barriers were found for the two C=C/P=O conformers. In the compounds in which the interactions between the carboxylic and phosphonic moieties are smaller, the most stable conformers are the C=C/P=O s-cis ones. In most of the conformers, the C=C/C=O system presents the disposition s-cis. The Z-(2-carboxy-vinyl) and Z-(2-carboxy-propenyl) phosphonic acids present intramolecular hydrogen bonds, existing in at least four conformer with internal hydrogen bonds. These last compounds were more rigorously studied at RHF/3-21G* and RHF/6-31G** levels. The most stable conformer shows a trans structure for the C=C/P=O angle, with an intramolecular hydrogen bond located between the hydroxylic hydrogen of phosphonic group and the carbonyl oxygen of carboxylic moiety. A secondary conformer is found with a double intramolecular hydrogen bond between two hydroxylic hydrogens of the phosphonic moiety and the oxygen of carboxylic bond. Another secondary conformer appears with an intramolecular hydrogen bond between the oxygen of the phosphoryl bond and the hydroxylic hydrogen of the carboxylic group. A study of the topology of charge densities is carried out. This analysis reveals bonds with an ionic participation. A very weak π conjugation, variable with the conformers, is found in the C=C/P=O system, as well as a strongly polarized P=O partial triple bond. The intramolecular hydrogen bonds give rise to cyclic structures.  相似文献   

4.
Intramolecular interactions are shown to be key for favoring a given structure in systems with a variety of conformers. In ortho-substituted benzene derivatives including a beryllium moiety, beryllium bonds provide very large stabilizations with respect to non-bound conformers and enthalpy differences above one hundred kJ·mol−1 are found in the most favorable cases, especially if the newly formed rings are five or six-membered heterocycles. These values are in general significantly larger than hydrogen bonds in 1,2-dihidroxybenzene. Conformers stabilized by a beryllium bond exhibit the typical features of this non-covalent interaction, such as the presence of a bond critical point according to the topology of the electron density, positive Laplacian values, significant geometrical distortions and strong interaction energies between the donor and acceptor quantified by using the Natural Bond Orbital approach. An isodesmic reaction scheme is used as a tool to measure the strength of the beryllium bond in these systems in terms of isodesmic energies (analogous to binding energies), interaction energies and deformation energies. This approach shows that a huge amount of energy is spent on deforming the donor–acceptor pairs to form the new rings.  相似文献   

5.
Two 3-diethylaminomethyl-5-R-salicylic aldehydes were obtained and studied in chloroform solutions by FTIR and NMR spectroscopy. The existence of an equilibrium between the structures with OHO=C and NHO intramolecular hydrogen bonds was suggested. In the case of compound 1 (R=OCH3) the OHO=C intramolecular hydrogen bond was more favorable whereas in the case of compound 2 (R=Br) the structure with the OHN intramolecular hydrogen bond was predominant.  相似文献   

6.
Four conformers of the heterodimer o-anisic acid–formic acid, formed in a supersonic expansion, have been probed by Fourier transform microwave spectroscopy. Two of these forms have the typical double intermolecular hydrogen-bond cyclic structure. The other two show the o-anisic acid moiety bearing a trans-COOH arrangement supported by an intramolecular O−H⋅⋅⋅O bond to the neighbor methoxy group. In these conformers, formic acid interacts with o-anisic acid mainly through an intermolecular O−H⋅⋅⋅O hydrogen bond either to the O−H or to the C=O moieties, reinforced by other weak interactions. Surprisingly, the most abundant conformer in the supersonic expansion is the complex in which the o-anisic acid is in trans arrangement with the formic acid interacting with the O−H group. Such a trans-COOH arrangement in which the intramolecular hydrogen bond dominates over the usually observed double intermolecular hydrogen bond interaction has never been observed previously in an acid–acid dimer.  相似文献   

7.
X-Ray crystallography and NMR show a strong preference for trans conformers of N′-phenyl or N′-(2-pyridyl) 2-pyridinecarboxylic acid hydrazides, stabilized by an NHNpyr. intramolecular hydrogen bond both in the solid state and in solution. This allows us to extrapolate that oligomers of this unit should adopt extended linear conformations.  相似文献   

8.
The method of dipole moments and DFT B3LYP/6-31G* quantum-chemical calculations were used to study the structures of ortho-substituted aryl-and arylmethyldiphenyl(diethyl)phosphine oxides. It was established that methyl ethers of phosphorus-containing benzyl alcohols and phenols exist as equilibrium mixtures of several conformers with prevalence of forms with the weakest steric interactions. Preferred conformers of o-[(diethylphosphinoyl)methyl]benzyl alcohol and i-[(diphenylphosphinoyl)methyl]phenol contain an intramolecular hydrogen bond between the hydroxyl hydrogen atom and phosphinoyl oxygen atom.  相似文献   

9.
The sarcosine–methanesulfonic acid (2:1) crystal was selected for examination of two problems: relations between different components of the amino acid–acid hydrogen bond network and a role of very strong and highly polarizable OHO hydrogen bond in the main structural units of the crystal: sarcosiniumsarcosine dimers (complexes). Our observations are based on phase transitions of the crystal monitored by DSC, X-ray diffraction and temperature evolutions of selected bands of IR spectra. Our experimental and DFT results provide information on the potential energy profile of the OHO proton and its evolution with temperature. The OO distance of the primary hydrogen bond remains almost unchanged and its proton is strongly delocalized and sensitive on neighbour NHO hydrogen bond. We propose a possible mechanism of the phase transitions and coupling between νCO vibrations of the carboxyl group and moving of the proton in neighbour OHO hydrogen bridge.  相似文献   

10.
The inelastic neutron scattering (INS) spectrum (350–2000 cm?1) of potassium hydrogen dichloromaleate (solid slate) has been obtained. Two of the normal modes of vibration of the hydrogen bond [γ(OHO) and δ(OHO)] were observed and assigned. No INS band vas(OHO) was observed in the region 500–1300 cm?1. This conflicts with expectations from infrared data.  相似文献   

11.
A new family of 2‐hydroxyalk(en/yn)ylimidazoles has been evaluated as serine–histidine bare dyad models for the ring‐opening reaction of L ‐lacOCA, a cyclic O‐carboxyanhydride. These models were selected to unravel the implication of intramolecular hydrogen bonding and to substantiate its influence on the nucleophilicity of the alcohol moiety, as it is suspected to occur in enzyme active sites. Although designed to exclusively facilitate the preliminary step of proton transfer during the studied ring‐opening reaction, these minimalistic models depicted a measureable increase in reactivity relative to the isolated fragments. A couple of reliable experimental and theoretical methods have been developed to readily monitor the strength of the intramolecular hydrogen bond in dilute solution. Results show that the folded conformers are the most nucleophilic species because of the intramolecular hydrogen bond.  相似文献   

12.

Stilbenophanes 1c and 2c were synthesized in good yields. Among alkali ions, both isomers only formed 1:1 complexes with lithium selectively. An X-ray structure of 1c shows a statistical disorder which leads to two refined positions for the ethylene moiety. The existence of a weak intramolecular C-H > O hydrogen bond in its structure was confirmed by both X-ray analysis and theoretical calculation.  相似文献   

13.
Ab initio calculations were performed for some different conformers of 1,2-ethanediol in order to reveal their relative energies. The equilibrium conformation is of gauche type with a comparatively weak intramolecular hydrogen bond. The energy of the all-trans conformer is 3 kcal/mol above the minimum.  相似文献   

14.
Conformational analysis of vasoactive intestinal peptide (VIP) receptor binding inhibitor Leu1-Met2-Tyr3-Pro4-Thr5-Tyr6-Leu7-Lys81 by various NMR techniques and constrained molecular dynamics (MD) simulation studies revealed that the molecule had a turn structure involving its Tyr3-Pro4-Thr5-Tyr6 moiety with intramolecular hydrogen bond between Tyr6NH→Tyr3CO. In order to mimic the structure of 1, peptidomimetic analogs 2-4 were synthesized using conformationally constrained scaffolds of 3,4-dideoxy furanoid sugar amino acids (2S,5R)-ddSaa1 5 and its enantiomer (2R,5S)-ddSaa2 6. All these analogs displayed well defined three-dimensional structures akin to that found in 1. Peptides 2 and 3, which differed only in the sugar amino acid stereochemistry, show propensity of structures with identical intramolecular hydrogen bonds between ThrNH→MetCO. A similar structure with a hydrogen bond between TyrNH→MetCO was observed in 4.  相似文献   

15.
Catalytic hydrogenation over Pd/C of vinylogous aminoacids and aminoamides has been studied. The configuration of the ethylenic bond has an important effect on the diastereoselectivity. The higher selectivity is observed with the E-vinylogous aminoamides. The conformational preferences of the α,γ-disubstituted γ-peptides have been determined. The 2S,4S-γ-peptide moiety induces a β-like folded structure stabilized by an intramolecular hydrogen bond, whereas the 2S,4R-diastereomer assumes an open structure.  相似文献   

16.
The relative energies of conformers of 1,2-ethanediol, 1,3-propanediol, and 1,4-butanediol are split into a sum of five different terms including the intramolecular OH?O interaction. This scheme allows to estimate the energy of the O-H?O intramolecular hydrogen bond of the tGG′g and gGG′g conformers of 1,3-propanediol, the g′GG′Gt and g′GG′Gg conformers of 1,4-butanediol, and the energy of the non-bonded O-H?O interaction in the g′Gt, g′Gg and g′Gg′ conformers of 1,2-ethanediol. This scheme provides pure hydrogen bond energies without assuming the geometry and/or electronic features to be constant between the conformation having a IHB and a reference conformation. The fitted energies show a perfect linear correlation with the corresponding r(H?O)−1 values. QTAIM atomic electron population and energies of the donor hydrogen calculated along the H-O-C-C internal rotation are found to be linearly correlated. These linear correlations display small changes at the BCP formation in 1,3-propanediol.  相似文献   

17.
Experimental and theoretical conformational analysis of N-methyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide, N-butyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide, and N-octyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide was carried out by the methods of dipole moments, IR spectroscopy, and Density Functional Theory (DFT) B3PW91/6-311++G(df,p) calculations. In solution, these N,N-dialkyl substituted bisphosphorylated acetamides exist as a conformational equilibrium of several forms divided into two groups—with Z- or E-configuration of the carbonyl group and alkyl substituent, and syn or anti arrangement of the phosphoryl-containing fragments relative to the amide plane. The substituents at the phosphorus atoms have eclipsed cis- or staggered gauche-orientation relative to the P=O groups, and cis orientation of the substituents is due to the presence of intramolecular H-contacts P=O...H−Cphenyl or p,π conjugation between the phosphoryl group and the phenyl ring. Preferred conformers of acetamides molecules are additionally stabilized by various intramolecular hydrogen contacts with the participation of oxygen atoms of the P=O or C=O groups and hydrogen atoms of the methylene and ethylene bridges, alkyl substituents, and phenyl rings. However, steric factors, such as a flat amide fragment, the bulky phenyl groups, and the configuration of alkyl bridges, make a significant contribution to the realization of preferred conformers.  相似文献   

18.

The title compound has been synthesized and characterized by elemental analysis and conductivity studies. The crystal and molecular structure has been determined. There are two different types of molecules in the crystal: mono- and diaquadi(acetato-O)-bis(2,4'-bipyridyl) copper (II). Both copper atoms occupy special positions. The copper atoms show almost ideal square pyramidal (4 + 1) and square bipyramidal (4 + 2) coordination. Due to the Jahn-Teller effect, the axial Cu-O(water) bond distances are longer than respective equatorial Cu-O(acetate) bond distances. The bond valences of the copper were computed. An intramolecular strong hydrogen bond linking O(water) and O(acetate) atoms exists in the molecule. The differences of geometrical environment for copper in mono- and diaquadi(acetato-O)-bis(2,4'-bipyridyl) copper(II) are imposed by strong intermolecular hydrogen bonds creating a linear infinite chain structure along crystallographic x axis. Also weak intramolecular hydrogen bonds are present in the molecule.  相似文献   

19.
1-(3,3-Dimethyl-3,4-dihydroisoquinoline-1-yl)-1-(quinoline-2-yl)methane (I) is studied using X-ray diffraction analysis. Molecule I is shown to have a flattened structure and to exist in the enamine tautomeric form: the active hydrogen atom is at the N(1) atom of the dihydroisoquinoline fragment. Molecule I is stabilized by the N–H...N intramolecular hydrogen bond.  相似文献   

20.
Four conformers of the non-proteinogenic α-amino acid isovaline, vaporized by laser ablation, are characterized by Fourier-transform microwave techniques in a supersonic expansion. The comparison between the experimental rotational and 14N nuclear quadrupole coupling constants and the ab initio calculated ones provides conclusive evidence for the identification of the conformers. The most stable species is stabilized by an N−H⋅⋅⋅O =C intramolecular hydrogen bond and a cis-COOH interaction, whereas the higher-energy conformers exhibit an N⋅⋅⋅H−O intramolecular hydrogen bond and trans-COOH, as in other aliphatic amino acids. The spectroscopic data herein reported can be used for the astrophysical purpose in a possible detection of isovaline in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号