首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper studies the generalized Lorenz canonical form of dynamical systems introduced by elikovský and Chen [International Journal of Bifurcation and Chaos 12(8), 2002, 1789]. It proves the existence of a heteroclinic orbit of the canonical form and the convergence of the corresponding series expansion. The ilnikov criterion along with some technical conditions guarantee that the canonical form has Smale horseshoes and horseshoe chaos. As a consequence, it also proves that both the classical Lorenz system and the Chen system have ilnikov chaos. When the system is changed into another ordinary differential equation through a nonsingular one-parameter linear transformation, the exact range of existence of ilnikov chaos with respect to the parameter can be specified. Numerical simulation verifies the theoretical results and analysis.  相似文献   

2.
We propose a general framework for the study of L 1 contractive semigroups of solutions to conservation laws with discontinuous flux:
$ u_t + \mathfrak{f}(x,u)_x=0, \qquad \mathfrak{f}(x,u)= \left\{{ll} f^l(u),& x < 0,\\ f^r(u), & x > 0, \right.\quad\quad\quad (\rm CL) $ u_t + \mathfrak{f}(x,u)_x=0, \qquad \mathfrak{f}(x,u)= \left\{\begin{array}{ll} f^l(u),& x < 0,\\ f^r(u), & x > 0, \end{array} \right.\quad\quad\quad (\rm CL)  相似文献   

3.
Under some constraints, solutes undergoing nonlinear adsorption migrate according to a traveling wave. Analytical traveling wave solutions were used to obtain an approximation for the solute front shape,c(z, t), for the situation of equilibrium nonlinear adsorption and first-order degradation. This approximation describes numerically obtained fronts and breakthrough curves well. It is shown to describe fronts more accurately than a solution based on linearized adsorption. The latter solution accounts neither for the relatively steep downstream solute front nor for the deceleration in time of the nonlinear front.Notation A parameter - c concentration [mol/m3] - c 0 * depth-dependent local maximum concentration [mol/m3] - c; c 0;c i concentration difference, feed, and initial resident concentrations, respectively [mol/m3] - D pore scale diffusion/dispersion coefficient [m2/yr] - f adsorption isotherm - f derivative off toc - f second derivative off toc - G * parameter - K nonlinear adsorption coefficient [mol/m3)1–n ] - l column length [m] - L d dispersivity [m] - m parameter - n Freundlich sorption parameter - P function ofc 0 * - q change inq [mol/m3] - q adsorbed amount (volumetric basis) [mol/m3] - q derivative ofq toc - R nonlinear retardation factor - retardation factor for concentrationc - R l linear retardation factor - R(z *) depth-dependent average retardation factor, for front at depthz * - s adsorbed amount (mass basis) [mol/kg] - t time [years] - u parameter - v flow velocity [m] - z * downstream front depth [m] - z depth [m] - transformed coordinate [m] - * reference point value of [m] - first-order decay parameter [y–1] - dry bulk density [kg/m3] - volumetric water fraction - parameter  相似文献   

4.
The authors consider the problem of finding u=u(x, t) and p=p(t) which satisfy u = Lu + p(t) + F(x, t, u, x, p(t)) in Q T=Ω×(0, T], u(x, 0)=ø(x), x∈Ω, u(x, t)=g(x, t) on ?Ω×(0, T] and either ∫G(t) Φ(x,t)u(x,t)dx = E(t), 0 ? t ? T or u(x0, t)=E(t), 0≤tT, where Ω?R n is a bounded domain with smooth boundary ?Ω, x 0∈Ω, L is a linear elliptic operator, G(t)?Ω, and F, ø, g, and E are known functions. For each of the two problems stated above, we demonstrate the existence, unicity and continuous dependence upon the data. Some considerations on the numerical solution for these two inverse problems are presented with examples.  相似文献   

5.
We consider the equation a(y)uxx+divy(b(y)yu)+c(y)u=g(y, u) in the cylinder (–l,l)×, being elliptic where b(y)>0 and hyperbolic where b(y)<0. We construct self-adjoint realizations in L2() of the operatorAu= (1/a) divy(byu)+(c/a) in the case ofb changing sign. This leads to the abstract problem uxx+Au=g(u), whereA has a spectrum extending to + as well as to –. For l= it is shown that all sufficiently small solutions lie on an infinite-dimensional center manifold and behave like those of a hyperbolic problem. Anx-independent cross-sectional integral E=E(u, ux) is derived showing that all solutions on the center manifold remain bounded forx ±. For finitel, all small solutionsu are close to a solution on the center manifold such that u(x)-(x) Ce -(1-|x|) for allx, whereC and are independent ofu. Hence, the solutions are dominated by hyperbolic properties, except close to the terminal ends {±1}×, where boundary layers of elliptic type appear.  相似文献   

6.
We prove that any bounded solution (u, u 1) ofu u +du t –u+f(u)=0,u=u(x, t), xN,N3, converges to a fixed stationary state provided its initial energy is appropriately small. The theory of concentrated compactness is used in combination with some recent results concerning the uniqueness of the so-called ground-state solution of the corresponding stationary problem.  相似文献   

7.
Using an Orlicz–Sobolev Space setting, we consider an eigenvalue problem for a system of the form
We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz–Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C 1.  相似文献   

8.
We study and obtain formulas for the asymptotic behavior as ¦x¦ of C 2 solutions of the semilinear equation u=f(x, u), x (*) where is the complement of some ball in n and f is continuous and nonlinear in u. If, for large x, f is nearly radially symmetric in x, we give conditions under which each positive solution of (*) is asymptotic, as ¦x¦, to some radially symmetric function. Our results can also be useful when f is only bounded above or below by a function which is radially symmetric in x or when the solution oscillates in sign. Examples when f has power-like growth or exponential growth in the variables x and u usefully illustrate our results.  相似文献   

9.
A simplified model was developed for describing the heat and mass transfer through a gas-liquid or a solid-liquid interface of a wavy or turbulent falling liquid film. The model assumes that turbulent transport near a gas-liquid or a solid liquid interface is governed by eddies whose length and velocity scales can be characterized by bulk turbulence and that in a region near the interface, the turbulence is damped by viscosity and not surface tension. A comparison with literature correlations and data shows that the model can predict the general form of the equations used in correlating transfer coefficients in wavy and turbulent falling films with or without interfacial shear.
Modellierung von Wärme- und Stoffübertragung in einem welligen und turbulenten Rieselfilm
Zusammenfassung Es wurde ein vereinfachtes Modell entwickelt, das den Wärme-und Stoffübergang über die Phasengrenze von gasförmig-flüssig oder fest-flüssig an einem welligen turbulenten Rieselfilm beschreibt. Das Modell nimmt an, daß der turbulente Transport in der Nähe der gasförmigen-flüssigen oder festenflüssigen Phasengrenze durch Wirbel bestimmt wird, deren Längen-und Geschwindigkeitsmaße durch den Turbulenzgrad in der Strömung charakterisiert sind und daß in unmittelbarer Nähe der Phasengrenze die Turbulenz durch die Viskosität und nicht durch die Oberflächenspannung gedämpft wird. Ein Vergleich mit Werten aus der Literatur und den gefundenen Daten zeigt, daß das Modell die generelle Form von Gleichungen vorhersagen kann, wie sie zur Berechnung von Transportkoeffizienten in welligem und turbulentem Rieselfilm mit oder ohne Schubspannung an der Phasengrenze benutzt werden.

Nomenclature a proportionality constant in eddy diffusivity expression, s–1 - C p heat capacity at constant pressure, J/kg °K - d tube diameter, m - D molecular diffusivity of gas or solid in liquid, m2/s - g, g c gravitational acceleration constant, m/s2; proportionality factor, kg m/N s2 - h, h * heat transfer coefficient, W/m2 °K; (h/k) (v2/g)1/3, dimensionless - k thermal conductivity of liquid, W/m °K - k L , k L * liquid-side mass transfer coefficient, m/s; (k L/D) (v2/g)1/3, dimensionless - l D , l H eddy mixing length for mass; for heat, m - l 0 eddy mixing length in bulk liquid, m - L tube length, m - m, n exponent - Pr Prandtl number,c p/k - q heat flux, W/m2 - Q volumetric flow rate, l/min - Re film Reynolds number, 4Q/ dv or 4 / - Sc Schmidt number,v/D - T b ,T w bulk liquid temperature; wall temperature - y , y y-component eddy fluctuating velocity;Y-component, m/s - v0 eddy velocity in the bulk liquid, m/s - v * friction velocity, ( wgc/)1/2, m/s - v i * friction velocity at gas-liquid interface, ( igc/)1/2, m/s - y normal distance measured from the gas-liquid interface, m - Y normal distance measured from the solid-liquid interface, m - thermal diffusivity, m2/s - mass flow rate per unit periphery, kg/m s - film thickness, m - (*, + dimensionless film thickness, /(v2/g)1/3;v */v - D , H eddy diffusivity for mass; for heat, m2/s - thickness of the zone of damped turbulence, m - surface tension, N/m - v kinematic viscosity, m2/s - liquid density, kg/m3 - w , i shear stress at wall; at interface, N/m2 - i * dimensionless interfacial shear, i g c / (vg) 2/3  相似文献   

10.
The work describes a way to obtain loss modulus and storage modulus master curves from oscillatory measurements of silicone oils.The loss modulus master curve represents the dependence of the viscous flow behavior on · 0 * and the storage modulus master curve — the dependence of the elastic flow behavior on · 0 * .The relation between the values of the loss modulus and storage modulus master curves (at a certain frequency) is a measurement of the viscoelastic behavior of a system. The G/G-ratio depends on · 0 * which leads to a viscoelastic master curve. The viscoelastic master curve represents the relation between the elastic and viscous oscillatory flow behavior.  相似文献   

11.
Summary The differential equationd 2/dx 2+{a[cosh (x/c)]–2+b[sinh (x/c)]–2m 2}=0, which is a special case of an equation that is encountered in various physical problems, is solved analytically. The eigenvalue problem which arises when this equation is combined with certain boundary conditions is discussed and solved for various cases.  相似文献   

12.
In marine geophysical seismological prospecting extensive use is made of towed receiving systems consisting of extended flexible cylinders containing acoustic sensors over which the water flows in the longitudinal direction. The boundary layer pressure fluctuations on the cylinder surface are picked up by the sensors as hydrodynamic noise. This paper is concerned with the study of the energy and spacetime characteristics of the pressure fluctuations in the turbulent boundary layer on an extended flexible cylinder in a longitudinal flow. The pressure fluctuations on the cylinder surface have been investigated experimentally for ReX=(2–4)·107, a dimensionless diameter of the pressure fluctuation sensors d p + =dpu*/=500, where dp is the sensor diameter, u* the dynamic viscosity, and the viscosity coefficient, and frequencies 0.02311.259 (=*/U). The spectral and correlation characteristics of the pressure fluctuations on the surface of the flexible cylinder are found to differ from the corresponding characteristics for a rigid cylinder [1–4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i aza, No, 5, pp. 49–54, September–October, 1989.  相似文献   

13.
Steady and unsteady local concentration has been determined analytically for two- und three-dimensional sources and is presented for various boundary-concentrations, volumetric flows and diffusion coefficients. The steady cases have been evaluated numerically. In addition an unsteady two-dimensional mass transport has been evaluated.
Stofftransport in Quellströmungen
Zusammenfassung Es wurden die stationäre und instationäre örtliche Konzentration von einer zwei- und drei-dimensionalen Quellströmung als Funktion verschiedener Randkonzentrationen, verschiedener Stromvolumen und Diffusionskoeffizienten analytisch bestimmt. Die stationären Fälle wurden numerisch ausgewertet. Außerdem wurde ein zwei-dimensionaler instationärer Stofftransport behandelt.

Nomenclature a inner radius of circle (2-dimensional case), inner radius of sphere (three-dimensional case) - b } >a outer radius of circle (2-dimensional case), outer radius of sphere (three-dimensional case) - c concentration - c 1,c 2 given concentration at the boundariesr=a andb resp - c i initial concentration at the timet=0 - D diffusion coefficient - I n +1/2 modified spherical Bessel function - J v ,Y v Bessel function ofv-th order and first and second kind resp - k =b/a} > 1 diameter ratio - P n o () Legendre polynomials - ¯ r, polar coordinates - r, , spherical coordinates - t time - u velocity in radial direction - V 0 volumetric flow - 0 V/4D flow parameter for two-dimensional flow - 0 V 0/8 D flow parameter for three-dimensional flow - mn eigenvalues - mn te] 2 =n 2 + 0 2 ,=cos =r/a roots of determinant (28)  相似文献   

14.
We study abstract evolution equations with nonlinear damping terms and source terms, including as a particular case a nonlinear wave equation of the type $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea where 0 < T £ ¥0\Omega is a bounded regular open subset of \mathbbRn\mathbb{R}^n, n 3 1n\ge 1, b,c > 0b,c>0, p > 2p>2, m > 1m>1. We prove a global nonexistence theorem for positive initial value of the energy when 1 < m < p,    2 < p £ \frac2nn-2. 1-Laplacian operator, q > 1q>1.  相似文献   

15.
We study the regularity and the asymptotic behavior of the solutions of the initial value problem for the porous medium equation $$\begin{gathered} {\text{ }}u_t = \left( {u^m } \right)_{xx} {\text{ in }}Q = \mathbb{R} \times \left( {{\text{0,}}\infty } \right){\text{,}} \hfill \\ u\left( {x{\text{,0}}} \right) = u_{\text{0}} \left( x \right){\text{ for }}x \in \mathbb{R}{\text{,}} \hfill \\ \end{gathered}$$ with m > 1 and, u 0a continuous, nonnegative function. It is well known that, across a moving interface x=ζ(t) of the solution u(x, t), the derivatives v tand v x of the pressure v = (m/(m?1)) u m?1 have jump discontinuities. We prove that each moving part of the interface is a C curve and that v is C on each side of the moving interface (and up to it). We also prove that for solutions with compact support the pressure becomes a concave function of x after a finite time. This fact implies sharp convergence rates for the solution and the interfaces as t→∞.  相似文献   

16.
The unsteady laminar boundary layer flow is investigated for a semi-infinite flat plate subjected to impulsive motion. An approximate solution is obtained by utilizing Meksyn's method. These results vary smoothly from Rayleigh's unsteady solution to the steady state solution of Blasius. Results are compared to those of Lam and Crocco.Nomenclature A expansion coefficient, see eq. (13) - a expansion coefficient, see eq. (10) - B expansion coefficient, see eq. (14) - b expansion coefficient, see eq. (12) - G function defined by eq. (6) - U free stream velocity - u velocity in x direction - v velocity in y direction - x coordinate along plate - y coordinate normal to plate Greek symbols (l, ) incomplete gamma function - function defined by eq. (15) - y(U/x) 1/2 - kinematic viscosity - x/Ut - (Uvx)1/2 f(, )  相似文献   

17.
A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar combined convection from three isothermal heat horizontal cylinders in staggered tube-bank and four isothermal heat horizontal cylinders in in-line tube-bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface including the zone beyond the separation point. The predicted values of total, pressure and friction drag coefficients, average Nusselt number and the plots of velocity flow fields and isotherms are also presented.
Die Finite-Elemente-Lösung von laminarer Strömung und kombinierter Konvektion von Luft in einer versetzten oder fluchtenden Rohranordnung
Zusammenfassung Eine Methode der finiten Elemente wird zur Lösung der vollständigen Navier-Stokes- und der Energiegleichung für die Probleme der laminaren kombinierten Konvektion an drei isothermen geheizten horizontalen Zylindern in versetzter Rohranordnung sowie für vier isotherme geheizte horizontale Zylinder in fluchtender Anordnung verwendet.Die Veränderung der Wandschubspannung, des Druckes und der Nusselt-Zahl werden für die gesamte Zylinderoberfläche, einschließlich des Bereiches nach dem Ablösepunkt, bestimmt. Die Werte des gesamten Widerstandsbeiwertes aufgrund von Druck und Reibung, die durchschnittliche Nusselt-Zahl und die Diagramme des Geschwindigkeitsfeldes und der Isothermen werden ebenfalls aufgezeigt.

Nomenclature C specifie heat - C D total drag coefficient - C f friction drag coefficient - C p pressure drag coefficient - D diameter of cylinder,L=2R 0 - G, g gravitational acceleration - Gr Grashof number, g(TwT )D 3/v 2 - h local heat transfer coefficient - K thermal conductivity - L spacing between the centers of cylinder - M l shape function - N i shape function - Nu, local and average Nusselt numbers - P dimensionless pressure, p*/u 2 - p *,p pressure, free stream pressure - Pe Peclet number,RePr - Pr Prandtl number, c/K - Ra Rayleigh number,Gr Pr - Re Reynolds number,Du /v - R 0 radius of cylinder - T temperature - T w temperature on cylinder surface with fixed value - T free stream temperature - v dimensionless x-direction component of velocity,v */u - u * x-direction component of velocity - u free stream velocity - v dimensionless Y-direction component of velocity,v */u - v * Y-direction component of velocity - X x-direction axis - x dimensionless x-direction coordinate,x */D - x* x-direction coordinate - Y Y-direction axis - y dimensionless Y-direction coordinate,y */D - y * Y-direction coordinate Greek symbols coefficient of volumetric thermal expansion - plane angle - dynamic viscosity - kinematic viscosity, / - density of fluid - w dimensionless surface shear stress, * w /u 2 - skw/* surface shear stress - dimensionless temperature,   相似文献   

18.
Diffusion in anisotropic porous media   总被引:2,自引:0,他引:2  
An experimental system was constructed in order to measure the two distinct components of the effective diffusivity tensor in transversely isotropic, unconsolidated porous media. Measurements were made for porous media consisting of glass spheres, mica particles, and disks made from mylar sheets. Both the particle geometry and the void fraction of the porous media were determined experimentally, and theoretical calculations for the two components of the effective diffusivity tensor were carried out. The comparison between theory and experiment clearly indicates that the void fraction and particle geometry are insufficient to characterize the process of diffusion in anisotropic porous media. Roman Letters A interfacial area between - and -phases for the macroscopic system, m2 - A e area of entrances and exits of the -phase for the macroscopic system, m2 - A interfacial area contained within the averaging volume, m2 - a characteristic length of a particle, m - b average thickness of a particle, m - c A concentration of species A, moles/m3 - c o reference concentration of species A, moles/m3 - c A intrinsic phase average concentration of species A, moles/m3 - c a c Ac A, spatial deviation concentration of species A, moles/m3 - C c A/c 0, dimensionless concentration of species A - binary molecular diffusion coefficient, m2/s - D eff effective diffusivity tensor, m2/s - D xx component of the effective diffusivity tensor associated with diffusion parallel to the bedding plane, m2/s - D yy component of the effective diffusivity tensor associated with diffusion perpendicular to the bedding plane, m2/s - D eff effective diffusivity for isotropic systems, m2/s - f vector field that maps c A on to c a , m - h depth of the mixing chamber, m  相似文献   

19.
A study has been made of the flow formed in a supersonic nozzle when gas is blown in a transverse jet into an expanding supersonic flow. Measurements were made of the total and static pressures of the flow at several sections of the nozzle. It was established that, depending on the relative flow rate = mj/(mj+ m0) of the blown gas (mjand m0 are the flow rates of the blown gas and the main flow, respectively), there exist two flow regimes with different dependences of the Mach number of the flow. At small , the experimental flow parameters correspond satisfactorily to the parameters calculated in a one-dimensional model with a narrow mixing layer near the blowing section. Agreement was observed at flow rates less than a certain *, this critical value being determined in the model as the flow rate at which the flow after mixing becomes sonic. In the experiments at large flow rates of the blown gas, * < < 1, the value of M for the flow hardly depends on and corresponds to the calculated value of M for a supersonic flow having the velocity of sound near the blowing section. A scheme is proposed for calculating the flow in a nozzle with transverse blowing in the supersonic part; it describes satisfactorily the experimental results in the complete range of blown-gas-main-flow flow rate ratios (0 1) over the complete length of the nozzle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 188–192, May–June, 1984.  相似文献   

20.
The existence of a (unique) solution of the second-order semilinear elliptic equation $$\sum\limits_{i,j = 0}^n {a_{ij} (x)u_{x_i x_j } + f(\nabla u,u,x) = 0}$$ withx=(x 0,x 1,?,x n )?(s 0, ∞)× Ω′, for a bounded domainΩ′, together with the additional conditions $$\begin{array}{*{20}c} {u(x) = 0for(x_1 ,x_2 ,...,x_n ) \in \partial \Omega '} \\ {u(x) = \varphi (x_1 ,x_2 ,...,x_n )forx_0 = s_0 } \\ {|u(x)|globallybounded} \\ \end{array}$$ is shown to be a well-posed problem under some sign and growth restrictions off and its partial derivatives. It can be seen as an initial value problem, with initial value?, in the spaceC 0 0 $(\overline {\Omega '} )$ and satisfying the strong order-preserving property. In the case thata ij andf do not depend onx 0 or are periodic inx 0, it is shown that the corresponding dynamical system has a compact global attractor. Also, conditions onf are given under which all the solutions tend to zero asx 0 tends to infinity. Proofs are strongly based on maximum and comparison techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号