首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Amyloid precursor protein (APP) plays a key role in Alzheimer's disease (AD), although the function of this membrane protein is still unclear. Metal ions are implicated in AD and they also interact with APP. APP possesses a strong ZnII binding site, which is evolutionary conserved. In this paper a synthetic peptide, APP170-188, with a sequence corresponding to the conserved ZnII-binding domain of APP, was synthesised and its metal-binding properties analysed. Titration experiments pointed to the binding of a stoichiometric amount of divalent ions. Further studies indicated that the binding of divalent metals like ZnII, CdII and CoII induces the dimerisation of the peptide. This dimer contains a dinuclear cluster in which the two divalent metals are bridged by two thiolate ligands from cysteine residues. The other two ligands of the tetrahedral coordination sites of each metal ion are terminal thiolate ligands. This structure was supported by the following arguments. The complex formed with CoII presents the characteristic features for tetrahedral tetrathiolate coordination in its UV-visible spectrum. The sequence of APP170-188 contains only three cysteine residues, which is incompatible with a monomeric CoII-APP170-188 complex. EPR measurements of the complex with one equivalent of CoII show almost no signal at 4 K, which is compatible with an antiferromagnetic spin-coupling of the metal ions in a cluster structure. Size-exclusion chromatography indicated that the elution time for the complexes with ZnII and CdII corresponds to the expected molecular weight of a dimer. The circular dichroism (CD) spectrum of the complex with one equivalent of CdII shows a band at 265 nm+, and an ellipticity similar to those observed for similar CdII-thiolate clusters. Possible biological implications of the ZnII binding site and the metal-induced dimerisation are discussed.  相似文献   

2.
Three copies of peptide sequences from the peptaibol family, known to affect the permeability of the lipid bilayer of membranes, were connected to tris(2-aminoethyl)amine (TREN), a tripodal metal ion ligand, to prepare functional peptides capable of modifying the permeability of liposomal membranes. Some of the resulting tripodal polypeptide derivatives are very effective in promoting carboxyfluorescein (CF) leakage from CF-loaded unilamellar vesicles composed of a 70:30 phosphatidylcholine/cholesterol blend. The activity of these novel compounds was shown to be tunable upon metal ion coordination of the TREN subunit; the tripodal apopeptide was far more effective than its ZnII complex. Leakage experiments showed that a minimum number of five amino acids per peptide chain is required to form active systems. A mechanism is proposed in which the ZnII ion changes the conformation of the template from extended to globular and thus acts as an allosteric regulator of the activity of the systems. Molecular modeling studies indicate that when the three peptide chains are connected to the template in the extended conformation, the resulting tripodal polypeptide is able to span across the membrane, thus allowing the formation of permeable channels made of a cluster of molecules. The same change of conformation induces, to some extent, fusion of the membranes of different liposomes.  相似文献   

3.
4.
A new ditopic ligand, 4'-(4-(2,2,2-tris(1H-pyrazol-1-ido)ethoxymethyl)phenyl)-2,2':6',2'-terpyridine (pzt), has been prepared and its coordination chemistry studied. Metal ions with a preference for octahedral geometry form ML(2) complexes that are readily isolated and characterised, with the metal ion being bound to the terpyridine sites of both ligands. Other metal ions bind to the terpyridine site of just one ligand. In the case of silver(i), a dinuclear M(2)L(2) complex has been isolated in which each silver ion is coordinated to the terpyridine site of one ligand and to a single pyrazolyl donor group from the second ligand. Evidence for binding of metal ions to the tris(pyrazolyl) binding site was obtained by electrospray mass spectrometry and NMR techniques. The free ligand and three metal complexes, including the disilver complex, have been characterised by X-ray crystallographic techniques.  相似文献   

5.
The fluorescence chemosensor ATMCA has been realised by appending an anthrylmethyl group to an amino nitrogen of TMCA (2,4,6-triamino-1,3,5-trimethoxycyclohexane), a tripodal ligand selective for divalent first-row transition metal ions in water. The ATMCA ligand can act as a versatile sensor for ZnII and CuII ions. Its sensing ability can be switched by simply tuning the operating conditions. At pH 5, ATMCA detects copper(II) ions in aqueous solutions by the complexation-induced quenching of the anthracene emission. Metal ion concentrations < 1 microM can be readily detected and very little interference is exerted by other metal ions. At pH 7, ATMCA signals the presence of ZnII ions at concentrations < 1 microM by a complexation-induced enhancement of the fluorescence. Again the sensor is selective for ZnII over several divalent metal ions, with the exception of CuII, CoII and HgII. Most interestingly, the [ZnII(atmca)]2+ complex can act as a fluorescence sensor for specific organic species, notably selected dicarboxylic acids and nucleotides, by the formation of ternary ligand/zinc/substrate complexes. The oxalate anion is detected in concentrations <0.1 mM; however, no effects on the system's fluorescence is observed in the presence of monocarboxylic acids and long-chain dicarboxylic acids. Among the nucleotides, those containing an imide or amide function are readily detected and an unprecedented high sensitivity for guanine derivatives allows the determination of this nucleotide for 0.05-0.5 mM solutions. Moreover, [ZnII(atmca)]2+ is a very effective and selective sensor in the case of vitamin B13 (orotic acid) in sub-micromolar concentrations. The operative features of the systems investigated are also clearly suitable for intracellular analyses. The factors at the source of organic substrate recognition, here briefly discussed, are of paramount importance for further developments in the applicability of these sensing systems.  相似文献   

6.
A series of tripodal ligands derived from nitrilotriacetic acid and extended by three converging, metal-binding, cysteine chains was synthesised. Their ability to bind soft metal ions thanks to their three thiolate functions was investigated by means of complementary analytical and spectroscopic methods. Three ligands that differ by the nature of the carbonyl group next to the coordinating thiolate functions were studied: L(1) (ester), L(2) (amide) and L(3) (carboxylate). The negatively charged derivative L(3), which bears three carboxylate functions close to the metal binding site, gives polynuclear copper(I) complexes of low stability. In contrast, the ester and amide derivatives L(1) and L(2) are efficient Cu(I) chelators with very high affinities, close to that reported for the metal-sequestering metallothioneins (log K≈19). Interestingly, these two ligands form mononuclear copper complexes with a unique MS(3) coordination in water solution. An intramolecular hydrogen-bond network involving the amide functions in the upper cavity of the tripodal ligands stabilises these mononuclear complexes and was evidenced by the very low chemical-shift temperature coefficient of the secondary amide protons. Moreover, L(1) and L(2) display large selectivities for the targeted metal ion that is, Cu(I), with respect to bioavailable Zn(II). Therefore the two sulfur-based tripods L(1) and L(2) are of potential interest for intracellular copper detoxication in vivo, without altering the homeostasis of the essential metal ion Zn(II).  相似文献   

7.
A new tripodal ligand, tris[2-(((2-thiazolyl)methylidene)amino)ethyl]amine (Tatren), has been synthesized and characterized by NMR, IR, and UV-visible absorbance spectroscopy and elemental analysis. Tatren forms stable complexes with transition metal ions (Zn(2+), 1; Mn(2+), 2; Co(2+), 3) and the alkaline earth metal ions (Ca(2+), 4; Mg(2+), 5). Single-crystal X-ray structures of 1, 2, and 5 revealed six-coordinate chelate complexes with formula [M(Tatren)](ClO(4))(2) in which the metal centers are coordinated by three thiazolyl N atoms and three acyclic imine N atoms. Crystals of 1, 2, and 5 are monoclinic, P2(1)/c space group. Crystals of 4 are triclinic, P space group. The Ca(2+) complex is eight-coordinate with all N atoms of Tatren and one water molecule coordinated to the metal ion. Spectrophotometric titrations show that formation constants for the chelates of metal ions are >1 in methanol. Free Tatren inhibits the catalytic domain of matrix metalloproteinase-13 (MMP-13, collagenase-3) with K(i) = 3.5 +/- 0.6 microM. Molecular mechanics-based docking calculations suggest that one leg of Tatren coordinates to the catalytic Zn(2+) in MMPs-2, -9, and -13 with significant hydrogen bonding to backbone amide groups. High-level DFT calculations suggest that, in the absence of nonbonded interactions between Tatren and the enzyme, the most stable first coordination sphere of the catalytic Zn(2+) is achieved with three imidazolyl groups from His residues and two imine N atoms from one leg of Tatren. While complexes (1-3) do not inhibit MMP-13 to a significant extent, 4 does (K(i) = 30 +/- 10 microM). Hence, this study shows that tripodal chelating ligands of this class and their Ca(2+) complexes have potential as active-site inhibitors for MMPs.  相似文献   

8.
A trinuclear metal complex of general formula (L-H)M3(Mf)2 represents the first allosteric low molecular weight catalyst. L is a polyaza ligand having a tetradentate and two bidentate metal binding sites, Ms is a "structural" (allosteric) metal, and Mf are functional (catalytic) metals which interact with a substrate. In mononuclear [(L-H)Ms]+ complexes [(L-H)Cu(MeOH)]ClO4 (1a). [(L-H)Cu]NO3 x 2H2O (1b), [(L-H)Ni]ClO4 x 4H2O (2), and [(L-H)Pd]ClO4 x 2H2O (3), prepared from L and M2+ salts, the metal is strongly bound by an in-plane N4-coordination (confirmed by X-ray crystal structure determination of la). Formation of trinuclear complexes [(L-H)MsCu2]5+, with two functional Cu2+ ions coordinated to the bidentate sites of L, was evidenced in solution by photometric titration and by isolation of [(L-H)Cu3][PO4][ClO4]2 x 9H2O (4). The trinuclear complexes catalyze the cleavage of RNA-analogue 2-(hydroxypropyl)-p-nitrophenyl phosphate (HPNP), an activated phosphodiester. From a kinetic analysis of the cleavage rate at various HPNP concentrations, parameters KHPNP (the equilibrium constant for binding of HPNP to [(L-H)MsCu2]5+ and kcat (first-order rate constant for cleavage of HPNP when bound to the catalyst) were derived: KM= 170 (Ms= Cu2+), 340 (Ms = Ni2+), 2,600 (Ms = Pd2+) M(-1), kcat = 17 x 10(-3) (Ms= Cu2+) 3.1 x 10(-3) (Ms=Ni2+), 0.22 x 10(-3) (Ms = Pd2+) s(-1). Obviously, the nature of the allosteric metal ion Ms strongly influences both substrate affinity and reactivity of the catalyst [(L-H)MsCu2]5+. Our interpretation of this observation is that subtle differences in the ionic radius of Ms and in its tendency to distort the N4-Ms coordination plane have a significant influence on the conformation of the catalyst (i.e., preorganization of functional Cu2+ ions) and thus on catalytic activity.  相似文献   

9.
10.
X-ray structural studies on metal complexes with nucleotides and with pyridoxalamino acid Schiff bases are briefly reviewed. The results with ternary metal nucleotide complexes show that the oxopurine nucleotides coordinate to the metal ion through the N(7) atoms of the bases incis position. The relevance of this mode of binding is discussed in terms of the possible mechanism of action of the novel platinum drugs. On the basis of the studies on metal pyridoxal-amino acid Schiff base complexes, the variations in stereochemistry of the ligands in different metal complexes have been related to the catalytic activity of various metal ions in pyridoxal-catalyzed nonenzymatic reactions.  相似文献   

11.
The influence of the metal ion and chiral diamine used to form a metal(salen) complex on the catalytic activity of the complex in the asymmetric benzylation of an alanine enolate was investigated. Only metal ions which could form square-planar complexes gave catalytically active complexes, and best results were obtained with metal ions from the first row of transition metals, particularly copper(II) and cobalt(II). Salen ligands derived from acyclic, chiral 1,2-diamines were found to generate poor catalysts, an effect which seems to correlate with the ability of the substituents within the diamine to adopt a conformation in which they are anti to one another. Complexes derived from a variety of 5- and 6-membered cyclic 1,2-diamines did form active catalysts, but the enantioselectivity was always far lower than that of the parent cyclohexane-1,2-diamine derived complex.  相似文献   

12.
To redesign a metal site originally required for the stabilization of a folded protein structure into a functional metal site, we constructed a series of zinc finger mutant peptides such as zf(CCHG) and zf(GCHH), in which one zinc-coordinating residue is substituted into a noncoordinating one. The mutant peptides having water bound to the zinc ion catalyzed the hydrolysis of 4-nitrophenyl acetate as well as the enantioselective hydrolysis of amino acid esters. All the zinc complexes of the mutant peptides showed hydrolytic activity, depending on their peptide sequences. In contrast, the zinc complex of the wild-type, zf(CCHH), and zinc ion alone exhibited no hydrolytic ability. These results clearly indicate that the catalytic abilities are predominantly attributed to the zinc center in the zinc complexes of the mutant peptides. Kinetic studies of the mutant peptides demonstrated that the catalytic hydrolysis is affected by the electron-donating ability of the protein ligands and the coordination environment. In addition, the pH dependence of the hydrolysis strongly suggests that the zinc-coordinated hydroxide ion participates the catalytic reaction. This report is the first successful study of catalytically active zinc finger peptides.  相似文献   

13.
An artificial phosphodiesterase () bearing two types of metal binding sites, a catalytic site and a regulatory bipyridine site showed a unique allosteric transition in the catalytic activity against the metal concentration. The rate constants for the hydrolysis reaction of 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) and RNA dimer (ApA) with and without an effector metal ion were evaluated; the k(obs) value of HPNP hydrolysis for .(Zn(2+))(3) (2.0 x 10(-4) s(-1)) is 3.3 times larger than that for .(Zn(2+))(2). In the case of and Cu(2+), a 19.4 times larger k(obs) value was obtained for .(Cu(2+))(3) (1.2 x 10(-3) s(-1)) against .(Cu(2+))(2). The increase in the catalytic activity is ascribed to the allosteric conformational transition of induced by the coordination of effector metal ion to the Bpy moiety. A detailed investigation revealed that a conformational change of induced by the third M(2+) complexation enhances the rate of hydrolysis rather than a change in the substrate affinity.  相似文献   

14.
Metallo-beta-lactamases (MBLs) are targets for medicinal chemistry as they mediate bacterial resistance to beta-lactam antibiotics. Electrospray-ionization mass spectrometry (ESI-MS) was used to study the inhibition by a set of mercaptocarboxylates of two representative MBLs with different optimal metal stoichiometries for catalysis. BcII is a dizinc MBL (Class B1), whilst the CphA MBL (Class B2) exhibits highest activity with a single zinc ion in the active site. Experimental parameters for the detection of the metallo-enzyme and the metallo-enzyme-inhibitor complexes were evaluated and optimized. Following investigations on the stoichiometry of metal binding, the affinity of the inhibitors was investigated by measuring the relative abundance of the complex compared to the metalloprotein. The results for the BcII enzyme were in general agreement with solution assays and demonstrated that the inhibitors bind to the dizinc form of the BcII enzyme. The results for the CphA(ZnII) complex unexpectedly revealed an increased affinity for the binding of a second metal ion in the presence of thiomandelic acid. The results demonstrate that direct ESI-MS analysis of enzyme:inhibitor complexes is a viable method for screening inhibitors and for the rapid assay of the enzyme:metal:inhibitor ratios.  相似文献   

15.
Two tripodal ligands, bis(2-benzimidazolylmethyl)(2-pyridylmethyl)amine (L(1)) and bis(2-pyridylmethyl)(2-benzimidazolylmethyl)amine (L(2)), were synthesized. With the third chromophoric ligand antipyrine (Antipy), three series of lanthanide(III) complexes were prepared: [LnL(1)(Antipy)(3)](ClO(4))(3) (series A), [LnL(1)(Antipy)Cl(H(2)O)(2)]Cl(2)(H(2)O)(2) (series B), and [LnL(2)(NO(3))(3)] (series C). The nitrate salt of the free ligand H(2)L(1).(NO(3))(2) and six complexes were structurally characterized: Pr(3+)A, Y(3+)A, Eu(3+)B, Eu(3+)C, Gd(3+)C and Tb(3+)C, in which the two A and three C complexes are isomorphous. Crystallographic studies showed that tripodal ligands L(1) and L(2) exhibited a tripodal coordination mode and formed 1:1 complexes with all lanthanide metal ions. The coordination numbers of the lanthanide metal ions for the A, B, and C complexes were 7, 8, and 10, respectively. Conductivity studies on the B and C complexes in methanol showed that, in the former, the coordinated Cl(-) dissociated to give 3:1 electrolytes and, in the latter, two coordinated NO(3)(-) ions dissociated to give 2:1 electrolytes. Detailed photophysical studies have been performed on the free ligands and their Gd(III), Eu(III), and Tb(III) complexes in several solvents. The results show a wide range in the emission properties of the complexes, which could be rationalized in terms of the coordination situation, the (3)LC level of the complexes, and the subtle variations in the steric properties of the ligands. In particular the Eu(3+)A and Tb(3+)A complexes, in which the central metal ions were wholly coordinated by chromophoric ligands of one L(1) and three antipyrine molecules, had relatively higher emission quantum yields than their corresponding B and C complexes.  相似文献   

16.
17.
Thermal stability and its influence on the catalytic activity in CO oxidation of Cu, Pd and Pd-Cu zeolite systems were investigated. The increasing of catalytic activity in the first cycle of reaction is connected with the thermal decomposition of complexions and consequently with the changing of metal state in catalyst in the case of Cu/ZSM-5catalyst. This activity does not relate to initial zeolite with complex ions, but to the metal ions with the decreasing ligands number in the coordination sphere of metal ion. According to the EPR spectrum the copper ions form clusters in zeolite channels due to the spin changed interaction. It was established ESR method that 1.8% Cu/ZSM-5 catalyst in a reduced form has copper (I and II) ions by. The Pd/ZSM-5 catalysts with different metal content have high catalytic activity below the temperature decomposition in contrary to Cu-containing zeolites. On the one hand, it may be connected with the partial reduction of Pd ions during CO oxidation and, on the other hand, with the ability of Pd ions to form the respective label complexes with reagents as additional ligands. The same character of relation between thermal stability and catalytic activity for Pd-Cu/ZSM-5 catalyst was observed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Br?nsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.  相似文献   

19.
Manganese complexes of the ligand HphoxCOOR (R=H or Me) have been synthesized and characterized by X-ray analysis, ESI-MS, ligand-field spectroscopy, electrochemistry, and paramagnetic 1H NMR. The ligands, chirally pure or racemic, influence the structures of the complexes formed. Manganese(III) complexes of the ligand HphoxCOOMe are square-pyramidal or octahedral with two ligands bound in a trans fashion in the solid state. The racemic ligand (RS-HphoxCOOMe) as well as the enantiopure ligand (R-HphoxCOOMe) forms manganese complexes with similar solid-state structures. Ligand-exchange reactions occur in solution giving rise to meso complexes as confirmed by ESI-MS and deuteration studies. The manganese(III) complex of R-HphoxCOOH is octahedral, with two dianionic ligands bound in a fac-cct fashion in a tridentate manner. The manganese(III) complex of RS-HphoxCOOH is also octahedral with two dianionic ligands now bound in a trans fashion in a didentate manner and with two water molecules occupying axial sites. The paramagnetic 1H NMR spectra of the complexes have been interpreted on the basis of the relaxation times with the help of the inversion-recovery pulse technique. The binding of imidazole with the metal center depends on the chirality of the ligands in the metal complexes of HphoxCOOMe. Imidazole coordination was found to occur with the metal complex that contains two ligands with the same chirality (R and R) (R-1), while no imidazole coordination was found upon reaction with the metal complex that contains two ligands with opposite chirality (R and S) (RS-1). Epoxidation reactions of various alkenes with H2O2 as the oxidant reveal that the complexes give turnover numbers in the range of 10-35, the epoxide being the major product. The catalytic activity depends on the additives used, and a clear base effect is observed. The turnover numbers have been found to be higher in the complexes where no binding of N-Meim is observed. The latter fact unambiguously shows that imidazole binding is not a prerequisite for higher turnover numbers, in contrast to the Mn-Schiff base catalysts.  相似文献   

20.
Conformational flexibility and cooperativity in ligand recognition are two key aspects of the catalytic diversity of cytochrome P450 enzymes. In this study, we dissect the ligand binding stoichiometry and energetics of the soluble bacterial P450eryF by isothermal titration calorimetry (ITC) using three allosteric and two non-allosteric ligands of diverse chemistry. Complementary spectral binding studies and sequential, two-ligand docking simulations were performed to help assign the binding sites. Binding of 4-phenylpyridine (4-PP) or 4-(4-chlorophenyl)imidazole (4-CPI) showed 1:1 stoichiometry in ITC, consistent with the lack of cooperativity observed in spectral binding studies. The larger ligands 9-aminophenanthrene (9-AP), 1-pyrenebutanol (1-PB), and alpha-naphthoflavone (ANF) show cooperative spectral binding and yielded 2:1 stoichiometry. The associated thermodynamic parameters for the sites were calculated using a sequential binding mechanism. The binding constant (KD) for the first site was almost two times lower than that of the second site for all three compounds. Ligand binding at site 1 was entropically favored, whereas binding at site 2 was weak and entropically unfavorable. Simulations showed that two molecules of 9-AP, ANF or 1-PB can be adequately docked to two individual sub-sites within a large binding pocket. The absence of hydrophobic tethering and ligand stacking are consistent with the single low affinity binding site observed for 4-CPI and 4-PP. Competitive binding studies with P450eryF preloaded with either 1-PB or ANF showed a decrease in the affinities for 9-AP at both the sites, with large entropy-enthalpy compensation, indicating the ability of the binding pocket to accommodate two ligands of diverse chemistry and enable cooperativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号