首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of structured plasma-sprayed capillary-porous coatings on transient processes and the development of crisis phenomena at boiling under pulsed heat release was studied. The working fluid was liquid nitrogen on the saturation line at atmospheric pressure. It is shown that under unsteady heat release, there is a degeneration of the development of the boiling crisis on heaters with structured capillary-porous coatings at q < qCHF (critical heat flux at steady heat release). Under unsteady pulsed heat release, no rapid transition to the film boiling regime (without passing through the nucleate boiling stage) is observed on heaters with such coatings until the thermal load is more than two times higher than the critical heat flux for steady heat release. This significantly increases the times of transition to post-critical heat transfer. Analysis of synchronized measurements of surface temperature of heaters and high-speed video recording of transient processes shows that the degeneration of the heat transfer crisis at q < qCHF on samples with coatings occurs due to significantly lower liquid boiling temperature differences and specific features of the dynamics of propagation of self-sustaining evaporation fronts in comparison with a smooth heater.  相似文献   

2.
Presented are results of an experimental study of local heat transfer characteristics in boiling of the dielectric liquid perfluorohexane under forced convection in a horizontal microchannel heat exchanger. The experiments with a copper microchannel heat exchanger comprising 21 channels with sections of 335 × 930 μm were conducted with a mass velocity of 250 to 1000 kg/m2s and a heat flux through the outer wall of the heat exchanger of 3 to 60 W/cm2. The dependence of the local heat transfer coefficient on the heat flux density on the inner wall of the microchannels was established, as well as the critical heat flux. The experimental data are compared with calculations based on known models of heat transfer.  相似文献   

3.
The problems of simulation of heterogeneous nucleate pool boiling on a horizontal surface on the ascending branch of the boiling curve from the formation of a steam lens (SL) to the boiling crisis are considered. The proposed hypothesis provides in a number of cases a logically consistent interpretation of experiments and outlines the organizational principle of transferring the wall–liquid–steam system into the regime of nonwettable “dry spot” formation. The model includes the following types of nucleate boiling: (a) cyclic boiling with the contact line reverse to the bubble bottom center and bubble departure from the surface (at low heat flux q and the contact angle θ < 90°); (b) single steam bubble conversion into a steam lens, i.e., local film boiling with the possibility of spreading of a single “dry spot” at the variation of the contact angle θ ≥ 90°, and substantial growth of the departure diameter Dd and SL lifetime τd; (c) formation of a single steam cluster of four SLs at a given pressure, the liquid underheating, and the average wall overheating.  相似文献   

4.
采用分子动力学方法模拟了池沸腾中液体层加入异质原子对气泡成核的影响.分析了异质原子能量参数对液体起始气泡成核时间和温度的影响及其机理.结果表明,当异质原子能量参数小于液氩能量参数时,液体起始气泡成核时间缩短,起始温度降低.当异质原子剂能量参数大于液氩能量参数时,液体起始气泡成核时间增加,起始温度升高.异质原子在壁面上的吸附及在液体中的扩散行为影响固液界面性质,较大能量参数的异质原子扩散系数较小,更多能量参数较大的原子吸附在固体表面上使得壁面势能壁垒增加,导致沸腾时间延迟,液体需要吸收更多的热量克服势能壁垒,进而提高沸腾起始温度.能量参数较小的异质原子扩散系数较大,异质原子更容易分散到液体中,使得壁面附近液体层势能减小,液体层更容易气泡成核行为.  相似文献   

5.
Large dimension thermosyphons are efficient heat transfer components in heat recovery systems. Their performance limits depend on the following parameters: geometrical (length, diameter, inclination angle), physical (fluid, fill charge), thermal (temperature, heat flux).An experimental investigation was carried out with a large dimension, closed, two-phase thermosyphon which correspond to a device used in industrial recuperators. A vertical or inclinded steel thermosyphon, 3 m long and 27 mm inner diameter, was tested at temperatures varying from 100°C to 300°C with toluene as the working fluid. The lower part of the pipe was electrically heated along a variable length and the upper zone was cooled with an air stream whose flow rate and temperature were controlled. The maximum heat flux was measured as a function of temperature for different liquid fill charges and inclination angles. From these experimental data, boiling and condensation heat transfer coefficients were deduced. It was observed that the critical heat flux depends little on the fill ratio unless the charge is less than 20% for which a local dry-out occurs. The optimal fill charge was found to be between 20% and 50%. Experimental data have been compared with existing theories. The inclination effects have been taken into account with an empirical formula.  相似文献   

6.
A. Trejo  C. Garcia 《实验传热》2013,26(1):97-112
Transient heat transfer of liquid methane under forced convection in a 1.8 mm × 1.8 mm asymmetrically heated square channel was investigated. This study is aimed at understanding the heat transfer behavior of cryogenic propellant in cooling channels of a regeneratively cooled rocket engine at the start-up condition. To simulate high heat load conditions representative of regeneratively cooled rocket engines, a high heat flux test facility with cryogenic liquid handing capabilities was developed at the Center for Space Exploration Technology Research. The time history of inlet and outlet fluid temperatures and test section channel wall temperatures were measured at high heat flux conditions (from 1.19 to 3.80 MW/m2) and a Reynolds number (Re) range of 1.88 × 105 to 3.45 × 105. The measured wall temperature data point toward possible film boiling within the test section during certain tests, particularly with higher heat fluxes and lower Reynolds number conditions that resulted in higher wall temperatures. The transient average Nusselt numbers (NuL) of the channel obtained from the experimental measurements are lower than those calculated from the Sieder–Tate correlation (NuO); however, the ratio (NuL/NuO) increases with the increase in Reynolds number. The ratio is around 0.25 at the lower end of Re and then increases to 0.7 at the maximum Re studied in the present investigation.  相似文献   

7.
R Mehmood  S Rana 《Pramana》2018,91(5):71
The main objective of this study is to examine the two-dimensional (2D) oblique Oldroyd-B flow on a stretching heated sheet. The flow governing problem is converted into nonlinear ordinary differential equations through proper scaling transformations. The prevailing set of equations is solved computationally with a tolerance level of \({ 10}^{-5}\). The velocity and temperature of a fluid model under consideration are portrayed to discuss the influence of all associated parameters on momentum and thermal characteristics. Heat flux at the wall has been computed numerically and analysed in a physical manner. The results obtained depict a reversed flow region for non-positive values of shear flow components once a free parameter is varied. It is noticed that heat transfer at the wall drops due to a rise in Deborah number \(\beta _{1}\) as well as Biot number \(\hbox {Bi}\).  相似文献   

8.
The heat transfer from the surface of high-temperature superconductors to liquid nitrogen is studied. The effect of the heat flux density and heat-release surface orientation in the gravitational field on heat exchange characteristics is studied. It is shown that the heat transfer coefficient in the region of developed bubble boiling on a double-side cooled tape has a minimum at tilt angles close to 45°. The relations describing the dependence of the heat transfer coefficient on the heat-release surface orientation are derived.  相似文献   

9.
This paper deals with experimental results on flowboiling heat transfer of liquid moving in an annular channel with unilateral central heating under the conditions of a significant effect of capillary forces on the flow modes and heat transfer. Experiments were carried out on boiling freon R318C in an annular channel with a gap of 0.95 mm and transparent outer wall. The inner wall was heated by the electric current. The local heat transfer coefficients and flow modes are presented. The critical film thickness corresponding to suppression of nucleate boiling was determined.  相似文献   

10.
对于沸腾换热,一个主要的约束条件就是临界热流密度(Critical Heat Flux,简称CHF)。这个约束条件对沸腾换热量有一个最高值的限制。文中对矩形微槽道中的流动沸腾临界热流密度进行了实验研究。实验数据是在不同尺寸(0.15mm;0.4mm;1mm)微槽道中,在较大范围的面积质量流速和不同进口过冷度下,以去离子水为工质得到的。实验过程中发现,达到CHF时,靠近出口壁面温度会突然升高,此时传热效率迅速下降。实验数据分析结果表明:CHF随质量流量的增加而增加;进口过冷度对CHF没有明显影响;CHF随着出口干度的增加而降低。  相似文献   

11.
低温流体尤其是液氮在航天、电子冷却、低温生物医疗与超导磁体与电缆等领域有着广泛的应用.文中对光滑与多孔表面上的流体核态沸腾换热与临界热流密度的研究进行了归纳;总结了低温流体池沸腾的研究现状;比较了低温流体与常见制冷剂以及水在物性上的主要差异;综合分析了加热表面材料、多孔层厚度、孔隙率、烧结颗粒直径、平均孔隙直径与压力等...  相似文献   

12.
It follows from an analysis of existing data that the parameters of boiling heat transfer essentially depend on the thermophysical properties and geometrical characteristics (roughness and thickness) of the heat-release wall. However, it has been impossible, so far, to fully and correctly evaluate the effects of roughness and thickness of the heat-release wall. Probably, that is why, presently, no universal criterial relations exist that enable one to describe the huge amount of available experimental data on boiling heat transfer. This article presents an integration of the experimental data on heat transfer in boiling of various liquids on thick tubes having various thermophysical characteristics and roughnesses.  相似文献   

13.
The nitrogen pink afterglow was studied by optical emission spectroscopy in the DC flowing regime at a total gas pressure of 700 Pa and at the discharge current of 120 mA. The discharge was created in a Pyrex tube of 13 mm i.d. using nitrogen and argon of 99.999% purity with additional purification by Oxiclear columns and liquid nitrogen traps. The area ±3 cm around the observation point had to be cooled down to liquid nitrogen wall temperature in order to allow the study of the reactor wall temperature effect on the post-discharge. The maximum pink afterglow emission in pure nitrogen at ambient wall temperature was observed at a decay time of 6 ms. When the argon percentage in the gas mixture was increased the pink emission maximum was shifted to the later decay times. Simultaneously, the intensity of the pink afterglow decreased and at a 1:1 nitrogen-argon ratio the effect disappeared. Similar effects were also observed when the discharge tube wall around the observation point was cooled down to liquid nitrogen temperature. The argon atomic lines were only observed during the post-discharge at the highest argon concentration at a low wall temperature. The kinetic model showed that the pink afterglow quenching was connected to the decrease of the and pooling processes efficiency.  相似文献   

14.
浸没在多孔介质中的竖直管沸腾换热实验研究   总被引:2,自引:0,他引:2  
本文对竖直管外填充固体颗粒情况下,蒸馏水和无水乙醇两种工质的池沸腾换热现象进行了实验研究,分析了颗粒直径以及工质热物性对竖直管液池沸腾换热特性,包括沸腾滞后的影响规律,证明了在填充固体颗粒条件下,竖直管的池沸腾换热可以得到一定程度的强化,在低热负荷区,强化效果尤为明显。大颗粒对沸腾滞后现象有较好的缓解作用。在高热负荷区,由于气膜的出现,沸腾机理将有所改变。  相似文献   

15.
气液固三相流载气蒸发的抗垢性能   总被引:1,自引:0,他引:1  
分析了化工设备换热面上碳酸钙碱性污垢生成及其影响因素,认为液体在加热壁面上的过热是导致碳酸钙碱性污垢沉积的重要原因,降低料液在加热壁面上的过热度可收到明显的防垢抗垢效果。在蒸发器加热管内引入少量的惰性气体(载气)与流态化固体颗粒,使之形成气液固三相流载气蒸发,可显著强化传热,降低料液在加热壁面上的过热度。以碳酸钙模拟工业硬水的实验结果表明,气液固三相流载气蒸发过程表现出明显的防垢抗垢效果,且具有一定的在线清洗作用。  相似文献   

16.
In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.  相似文献   

17.
根据环形管内流动与传热的特点,重新定义了环形管的水力直径和热周直径,基于圆管环状流CHF解析模型,得到了环形管内环状流临界热负荷解析模型。该模型可以预测环形管内沸腾两相流环状流时在不同加热方式下发生的临界热负荷,加热方式包括有内侧加热、外侧加热、两侧同时加热等。数值预测结果与文献数据比较表明本文的解析模型在P=0.57-15.01.MPa,G=198-3789.5 kgm-2s-1,xc=0.068-0.855,L/Dhe=19.3-539.5范围内预测良好。  相似文献   

18.
在统计方法的基础上,对于池沸腾换热的传热机理提出了一个数学模型. 在没有增加新的经验常数的条件下,从该模型中可得到池沸腾热流密度是壁面过热度、活化穴最小与最大尺寸、流体的接触角与流体物理特性的函数. 该模型可以较好地解释润湿性如何影响沸腾热流密度. 对不同的接触角,模型预测的结果与实验相符合. 关键词: 池沸腾 传热 数学模型  相似文献   

19.
This paper represents results on investigating the dynamics of boiling and disintegration of superheated liquid films and jets. The first part deals with experimental study of boiling liquid outflow through short cylindrical and slit channels. Evolution of disintegration of a hot water jet flow is observed both at low and moderate superheating and at high and limit superheating, and also for vaporization mechanisms corresponding to these superheatings. Peculiarities of disintegration of jets through slit and cylindrical channels are noticed. Results on measuring the reactive thrust of the jet through a slit channel under different geometrical conditions behind the channel outlet are represented. The 1/f fluctuations in transient regimes of superheated liquid boiling and in transient regimes of behavior of the jet shape are found. The second part of this article represents results on experimental investigation of nonsteady heat transfer and dynamics of the development of crisis phenomena at boiling of a falling subcooled liquid film in the conditions of stepwise heat release. The experimental data were obtained using synchronized high-speed infrared thermography and video. It is shown that with growth and condensation of vapor bubbles, on the liquid film interface appear large-amplitude waves that lead to considerably increasing local intensity of heat transfer. New data on the boiling incipience temperature in a subcooled liquid film, depending on the heat flux density, are obtained. It is found that the development of boiling crisis is a result of appearance of local dry patches and their subsequent growth by the mechanism of longitudinal thermal conductivity in the heat transfer wall as the equilibrium heat flux density is exceeded.  相似文献   

20.
The problems associated with the physics of heterogeneous pool boiling at a low pressure on a flat horizontal surface are considered. The examples of parametric mismatch between the trends are connected with the thermophysical properties and wall surface microgeometry, with the size of the working area, with the affected zone of a growing bubble, and with the contact angle at the interface between the liquid, solid, and vapor phases. A conclusion is drawn concerning the possible causes of ambiguity in the results of the simulation of nucleate pool boiling modes under calculation of the individual contribution of each of the heat transfer mechanisms (convection, liquid microlayer evaporation, and rearrangement of the thermal boundary layer after bubble detachment). It is emphasized that the problem should be solved in the 3D conjugate formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号