首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response times and operating voltages of light shutters formed from polymer dispersed liquid crystals (PDLCs) have been studied experimentally and the results compared with calculations based on non-sperhically shaped nematic droplet models. The experiments were performed on light shutters with elongated and uniformly aligned droplets where the relaxation time and voltage response were measured. It is shown that the droplet shape can be a dominant factor, particularly for the relaxation time, and the data are compared with equations derived in terms of the aspect ratio of the droplet l = a/b, where a and b are the lengths of the semi-major and semi-minor axes, respectively, of the elongated droplet. It is further demonstrated that the electric field inside the droplet can be considerably smaller than the applied field, due to the conductivity and dielectric properties of the polymer and liquid crystal materials. These data are used to obtain values for the ratio of the conductivities of the polymer binder and liquid crystal droplet, as well as the anisotropy of the conductivity in the liquid crystal.  相似文献   

2.
Philip K. Chan 《Liquid crystals》2013,40(12):1777-1786
The magnetically-induced transient nematic director reorientation dynamics, confined in elongated bipolar droplets, is studied in this paper. Numerical results are obtained by solving the Leslie-Ericksen continuum theory in ellipses. The aspect ratio is varied to determine the effect of droplet shape on director reorientation dynamics. The magnetic field is restricted to the droplet axis of symmetry direction, which has not yet been studied but is fundamentally important in polymer dispersed liquid crystal (PDLC) film operation. The numerical results replicate frequently-reported experimental observations on the performance of PDLC films. These observations include the familiar exponential increases followed by saturation in light transmittance as the external applied field increases and the exponential increase (decrease) followed by saturation as time increases in the on- (off-) state. In addition, the experimental observation that switching field strength increases while decay time decreases as the droplet becomes more elongated, are also exhibited by the numerical results.  相似文献   

3.
《Liquid crystals》1999,26(12):1777-1786
The magnetically-induced transient nematic director reorientation dynamics, confined in elongated bipolar droplets, is studied in this paper. Numerical results are obtained by solving the Leslie-Ericksen continuum theory in ellipses. The aspect ratio is varied to determine the effect of droplet shape on director reorientation dynamics. The magnetic field is restricted to the droplet axis of symmetry direction, which has not yet been studied but is fundamentally important in polymer dispersed liquid crystal (PDLC) film operation. The numerical results replicate frequently-reported experimental observations on the performance of PDLC films. These observations include the familiar exponential increases followed by saturation in light transmittance as the external applied field increases and the exponential increase (decrease) followed by saturation as time increases in the on- (off-) state. In addition, the experimental observation that switching field strength increases while decay time decreases as the droplet becomes more elongated, are also exhibited by the numerical results.  相似文献   

4.
The basic mechanisms determining the formation of optical anisotropy in stretched, thin polymer dispersed liquid crystal (PDLC) films with micron sized nematic droplets have been studied experimentally and the results analysed in terms of a proposed theoretical model. The experiments were performed on PDLC films with the bipolar nematic director configuration in the droplets, where the film transmittance, microscopic structure, and birefringence of the polymer matrix were studied. It is shown that the orientational ordering of bipolar nematic droplets, introducing the main contribution to the ability of stretched PDLC film to polarize the transmitted light, is strongly dependent upon initial droplet shape and the elastic properties of the polymer matrix. The 'anomalous' nematic director orientation is also observed in a portion of elongated droplets where the axes of bipolar configurations do not coincide with the major axes of the droplet cavities due to the presence of inclusions at the cavity walls. The effect of alternation of droplet size and shape upon stretching and the influence of optical anisotropy of the polymer matrix on film transmittance are analysed. On the basis of the results obtained, simple criteria for optimization of main PDLC polarizer performance are formulated.  相似文献   

5.
A model to describe light scattering by polymer film containing of monolayer of liquid crystal droplets with inhomogeneous anchoring of liquid crystal molecules at the polymer-droplet interface is developed. It is based on the interference approximation of the wave scattering theory. The director field distribution in the droplet volume is determined by solving the free energy density minimization problem using the relaxation method. The spatial distribution of droplets in the layer is described by the hard disks model. The amplitude scattering matrices of individual droplets are found in the anomalous diffraction approximation. The algorithm for numerical analysis of the characteristics of light scattered in a polymer film containing droplets at homogeneous and inhomogeneous surface anchoring is described in terms of the partial filling factors of the monolayer film. Electrically controllable symmetry breaking effect of angular distribution of light scattered by films containing droplets with inhomogeneous anchoring at the polymer-droplet interface is described and experimentally confirmed.  相似文献   

6.
A. J  kli  L. Rosta  L. Noirez 《Liquid crystals》1995,18(4):601-605
We report here original results characterizing in situ the interactions between a smectic liquid crystal phase and a polymer network dispersed in it. These results have been obtained by neutron scattering on smectic liquid crystal (8CB) samples containing a physical network of 1.5wt% polymer. The samples were polymerized in the isotropic, or in the smectic A phases. For the first time it is experimentally proved that the polymerization of non-mesogenic monomers in an aligned smectic A matrix induces anisotropy in the resulting network. The network becomes elongated along the liquid crystal director. When the polymerization is carried out in the isotropic phase the polymer network has an isotropic distribution even if a magnetic field, which orients the liquid crystal director, is later applied. On the other hand, studies show that after several thermal cycles, the liquid crystal orientational order still remained. Without other external constraints, the polymer network freezes the alignment of the liquid crystal. It is probably imposed by pendant reticulates on the diffuse liquid crystal-polymer interfaces.  相似文献   

7.
We have microscopically observed the textures of very large droplets of cholesteric liquid crystal in a polymer matrix under the influence of an electric field E. When E = 0, the droplets exhibit rings and often a disclination line extends from the centre to the periphery of the droplet. As E increases, the droplet undergoes a progressive transition to a uniform-appearing texture. This uniform region first occurs near the centre of the droplet, then increases in radius as the field is increased. We propose that the field-off texture corresponds to the Frank-Pryce spherulite model while the uniform field-on texture is the planar texture.  相似文献   

8.
Polymer dispersed liquid crystals (PDLCs) using nematic liquid crystal and photo-curable polymer (NOA 65) were prepared by polymerisation-induced phase separation technique, in equal ratio (1:1) of polymer and liquid crystal (LC). We demonstrate that doping of small amount (0.125%, wt./wt.) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye in PDLC generously controlled the molecular orientation, dynamics of LC in droplet and size of droplets. The effects of multiwall CNTs and dye on PDLCs were studied in terms of transition temperature, droplet morphology, transmittance characteristic, contrast ratio and response time. The results exhibited that the values of the threshold electric fields were reduced from 8 V/µm (pure PDLC) to 1.18 and 1.72 V/µm, doped with multiwall CNTs and dye, respectively. The CNTs-doped PDLC shows faster switching response as compared with pure PDLC and dye-doped PDLC. However, dye-doped PDLC shows much higher contrast among all PDLC samples. Further, the results also illustrate that the birefringence value of LC in PDLCs was changed with doping of CNTs and dye.  相似文献   

9.
We measured the apparent interfacial tension between a liquid crystal and a flexible polymer by deformed droplet retraction method. An external electric field is applied to change the director orientation in liquid crystal droplet. The deformation and recovery of a single liquid crystal droplet dispersed in a polydimethylsiloxane (PDMS) matrix were realized by a transient shear flow and observed by polarized optical microscope. In order to control the director orientation in LC droplet, the electric field is applied perpendicular and parallel to the flow field, respectively. The different orientation induced by electric field in liquid crystal droplet has different behavior during droplet retraction and affect the apparent interfacial tension between liquid crystal and flexible polymer.  相似文献   

10.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

11.
Numerical results from the modelling and computer simulation of the magnetic-induced director reorientation dynamics in elongated bipolar nematic droplets are presented in this paper. The magnetic field is applied normally to the droplet axis-of-symmetry direction, which is one possible scenario found in applications of polymer dispersed liquid crystal (PDLC) films. This case has not yet been studied numerically, and its understanding is far from complete. The model is composed of the Leslie-Ericksen and Frank continuum theories and is solved in two dimensions since bipolar nematic droplets exhibit mirror symmetry in certain planes. The numerical results replicate frequently reported experimental observations on the performance of PDLC films. These observations include the ubiquitous exponential increase followed by saturation in light transmittance as the external applied field increases, and the exponential increase (decrease) followed by saturation as time increases in the on (off)-state. Furthermore, in contrast to current understanding for both the on- and off-states, the model predicts that the directors in the centre (surface) region of the droplet exhibit a dead time (no dead time) before reorientation. The numerical results presented in this paper provide a better understanding of the director reorientation dynamics in elongated bipolar nematic droplets; this can be used to optimize the design and performance of devices using PDLC films.  相似文献   

12.
《Liquid crystals》2001,28(2):207-215
Numerical results from the modelling and computer simulation of the magnetic-induced director reorientation dynamics in elongated bipolar nematic droplets are presented in this paper. The magnetic field is applied normally to the droplet axis-of-symmetry direction, which is one possible scenario found in applications of polymer dispersed liquid crystal (PDLC) films. This case has not yet been studied numerically, and its understanding is far from complete. The model is composed of the Leslie-Ericksen and Frank continuum theories and is solved in two dimensions since bipolar nematic droplets exhibit mirror symmetry in certain planes. The numerical results replicate frequently reported experimental observations on the performance of PDLC films. These observations include the ubiquitous exponential increase followed by saturation in light transmittance as the external applied field increases, and the exponential increase (decrease) followed by saturation as time increases in the on (off)-state. Furthermore, in contrast to current understanding for both the on- and off-states, the model predicts that the directors in the centre (surface) region of the droplet exhibit a dead time (no dead time) before reorientation. The numerical results presented in this paper provide a better understanding of the director reorientation dynamics in elongated bipolar nematic droplets; this can be used to optimize the design and performance of devices using PDLC films.  相似文献   

13.
Polymer-dispersed liquid crystals (PDLCs) are composite materials formed by micron-sized droplets of liquid crystals (LCs) dispersed in a polymer matrix, which can be turned from an opaque state to a transparent one by application of a suitable electric field. PDLCs have been proposed in applications related to the control of light transmittance on large surfaces (light shutters, displays, rear mirrors). Despite several advantages, PDLCs’ main drawback is haze, i.e. the fast decay of transmission at large viewing angles. In this paper, a method for achieving highly transparent PDLC devices over a wide range of viewing angles is proposed. The method is based on the use of PDLCs with tilted elongated LC droplets and driven by opportune electric fields, which are experimentally calculated and able to ensure an almost constant value for OFF-axis transmittance.  相似文献   

14.
“Polymer ball” polymer dispersed liquid crystal (PDLC) samples were fabricated by the photo-polymerization induced phase separation method and their relaxation behaviour was studied. It was found that upon removal of the applied electric field, the transmittance of the “polymer ball” PDLC sample decays exponentially from Ton to Tmemo with a relaxation time constant in the order of msec. It was found that the measured relaxation time constant decreases as the curing time increases and the LC concentration increases.  相似文献   

15.
Doping of conductive fullerene particles to the formulation of conventional holographic polymer dispersed liquid crystal‐induced dual effects of reducing both droplet coalescence and operating voltage. Fullerene induced an induction period which otherwise does not exist, followed by a gradual increase of diffraction efficiency to a saturation value being increased with increasing fullerene content. The increased diffraction efficiency was caused by the decreased droplet coalescence which was due to the hindered migration of LC by the fullerene particles. On the other hand, doped fullerene particles augmented the conductivity of polymer phase and hence the local electrical field imposed on LC droplet, which overcome the threshold for driving and reduced operating voltage and response times. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5590–5596, 2007  相似文献   

16.
In order to study the droplet pattern and electro-optic (EO) behaviour of polymer dispersed liquid crystal (PDLC) with the addition of dye, dichroic polymer dispersed liquid crystal (DPDLC) films were prepared using a nematic liquid crystal (NLC), photo-curable polymer (NOA 65) and anthraquinone blue dichroic dye (B2), in equal ratio (1:1) of polymer and liquid crystal (LC) by polymerisation induced phase separation (PIPS) technique. Dichroic dye was taken in different concentration (wt./wt. ratio) as 0.0625%, 0.125%, 0.25%, 0.5% and 1% of the LC mixture in DPDLC films. Initially, in an open circuit when there is no proviso for external electric field (0 V), LC droplets in polymer matrix exhibited bipolar pattern, though on closing the circuit with the increase of electric field pattern of droplets starts changing, LC molecules align along the direction of applied electric field and aligned completely relatively at higher field (30 V), which illustrate vertical radial pattern. Further, results show that the DPDLC film containing 0.0625% dye concentration with consistent average droplet size ~4.30 μm, exhibits the best transmission at lower operating voltage.  相似文献   

17.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

18.
Abstract

The spatial dependence of the orientation of the molecular director and of the nematic order parameter is obtained by minimization of the Landau–de Gennes free energy of the nematic liquid crystal confined in a spherical droplet. Special attention is given to the vicinity of the nematic–isotropic transition. The influence of the resulting nematic structure, large liquid crystal–polymer interface and restricted molecular diffusion on the nuclear magnetic relaxation is analysed. The translationally-induced molecular reorientation and the liquid crystal–polymer cross relaxation are discussed in particular. The possibility of an indirect study of the molecular anchoring on the polymer surface is demonstrated.  相似文献   

19.
The polymerization induced phase separation (PIPS) process in a polymer dispersed liquid crystal (PDLC) system was studied by using Monte-Carlo (MC) simulation methods. In particular, the dependence of the phase separation between liquid crystal and polymer on the parameters, such as temperature γ = ε/kT, polymerization reactivity p and curing time tc, was examined. It was found that the pair correlation function G(a, t) decreases with the decrease of temperature when the polymerization reactivity p is fixed. Our results also revealed that at a constant temperature, the final value of G(a) first increases with the increasing of p, and finally approaches a constant value. This observation provides us an effective way of controlling the size of liquid crystal droplets as well as their distributions. It was observed that the equilibrium value of G(a) increases as the curing time increases when both temperature and p are kept constant. This is another way of controlling the size of liquid crystal droplets.  相似文献   

20.
The application of high intensity electric fields to polymer dispersed liquid crystal (PDLC) films can induce changes in their electro-optical properties and morphology. In particular, a quasilinear electro-optical response to an external electric field can be achieved if an internal built-in d.c. field is induced. In this work, we show how the liquid crystal/polymer weight ratio influences the electro-optical response of 'charged' PDLCs, i.e. of PDLC films after the application of a high intensity electric field. We observed that a quasilinear electro-optical response can be achieved in a well determined range of composition. Larger liquid crystal concentrations are unable to maintain the built-in field, while PDLCs with lower liquid crystal loadings do not allow the onset of a built-in d.c. field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号