首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAMEDOV B.A. 《中国化学》2004,22(6):545-548
A closed analytical relation is derived for the two-center nuclear attraction integrals over Slater type orbitals (STOs) in terms of binomial coefficients. This formula can be used in highly accurate calculations of the nuclear attraction integrals. The relationships obtained are valid for arbitrary values of quantum numbers and screening constants of STOs and location of nuclei.  相似文献   

2.
In this study, using complete orthonormal sets of exponential type orbitals (ETOs), a single closed analytical relation is derived for a large number of different expansions of overlap integrals over Slater type orbitals (STOs) with the same screening parameters in terms of Gegenbauer coefficients. The general formula obtained for the overlap integrals is utilized for the evaluation of multicenter nuclear attraction and electron repulsion integrals appearing in the Hartree–Fock–Roothaan equations for molecules. The formulas given in this study for the evaluation of these multicenter integrals show good rate of convergence and great numerical stability under wide range of quantum numbers, scaling parameters of STOs and internuclear distances.  相似文献   

3.
4.
YAKAR  Yusuf 《中国化学》2007,25(1):25-31
Ab initio calculations of the orbital and the ground state energies of some open- and closed-shell atoms over Slater type orbitals with quantum numbers integer and Slater type orbitals with quantum numbers noninteger have been performed. In order to increase the efficiency of these calculations the atomic two-electron integrals were expressed in terms of incomplete beta function. Results were observed to be in good agreement with the literature.  相似文献   

5.
Using the definition of STOs in terms of BTOs, we have presented analytical formula for two-center overlap integrals. The obtained formula contains generalized binomial coefficients and Mulliken integrals Ak and Bk. Taking into account the recent advances on the efficient calculation of Mulliken integrals (Harris, Int. J. Quantum Chem., 100 (2004) 142), we have obtained many more satisfactory results for two-center overlap integrals, for arbitrary quantum numbers, scaling parameters, and location of atomic orbitals.PACS No: 31.15.+qAMS Subject Classification: 81V55, 81–08  相似文献   

6.
Using expansion formulas for central and noncentral interaction potentials (CIPs and NCIPs, respectively) in terms of Slater type orbitals (STOs) obtained by the author (I.I. Guseinov, J. Mol. Model., in press), the multicenter multielectron integrals of arbitrary interaction potentials (AIPs) are expressed through the products of overlap integrals with the same screening parameters and new auxiliary functions. For auxiliary functions, the analytic and recurrence relations are derived. The relationships obtained for multicenter multielectron integrals of AIDs are valid for the arbitrary quantum numbers, screening parameters and location of orbitals.  相似文献   

7.
In this work we present the new recursion and analytical relations for the calculation of hypergeometric functions F(1,b;c;z) occurring in multicenter integrals of noninteger n Slater type orbitals. The formulas obtained are numerically stable for 0 < z < 1 and all integer and noninteger values of parameters b and c The Author cordially congratulates Prof. I.I. Guseinov on his 70th birthday  相似文献   

8.
Two-center nuclear attraction integrals over Slater type orbitals with integer and noninteger principal quantum numbers in nonlined up coordinate systems have been calculated by means of formulas in our previous work (T. Özdoan and M. Orbay, Int. J. Quant. Chem. 87 (2002) 15). The computer results for integer case are in best agreement with the prior literature. On the other hand, the results for noninteger case are not compared with the literature due to the scarcity of the literature, but also compared with the limit of integer case and good agreements are obtained. The proposed algorithm for the calculation of two-center nuclear attraction integrals over Slater type orbitals with noninteger principal quantum numbers in nonlined-up coordinate systems permits to avoid the interpolation procedure used to overcome the difficulty introduced by the presence of noninteger principal quantum numbers. Finally, numerical aspects of the presented formulae are analyzed under wide range of quantum numbers, orbital exponents and internuclear distances.  相似文献   

9.
10.
Two‐center overlap integrals over Slater type orbitals (STOs) have been expressed in terms of the well‐known Mulliken's integrals Bn(pt) using Rodrigues's formula for normalized associated Legendre functions. A computer program is written in Mathematica 4.0 for the evaluation of two‐center overlap integrals over STOs. Using this computer program, symbolic tables are presented for two‐center overlap integrals up to quantum numbers 1 ≤ n,n′ ≤ 3, 0 ≤ l,l′ ≤ 2, ?2 ≤ m,m′ ≤ 2. Numerical results of this work, for some quantum sets, have also been compared with prior literature and best agreement achieved with recent works of Barnett while some discrepancies were obtained with works of Öztekin et al. and Guseinov et al.  相似文献   

11.
By the use of exponential‐type functions (ETFs) the simpler formulas for the expansion of Slater‐type orbitals (STOs) in terms of STOs at a displaced center are derived. The expansion coefficients for translation of STOs are presented by a linear combination of overlap integrals. The final results are of a simple structure and are, therefore, especially useful for machine computations of arbitrary multielectron multicenter molecular integrals over STOs that arise in the Hartree–Fock–Roothaan approximation and also in the Hylleraas correlated wave function method for the determination of arbitrary multielectron properties of atoms and molecules. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 126–129, 2001  相似文献   

12.
Using integer and noninteger n-Slater type orbitals in single- and double-zeta approximations, the Hartree-Fock-Roothaan calculations were performed for the ground states of first ten cationic members of the isoelectronic series of He atom. All the noninteger parameters and orbital exponents were fully optimized. In the case of noninteger n-Slater type orbitals in double zeta basis sets, the results of calculations obtained are more close to the numerical Hatree-Fock values and the average deviations of our ground state energies do not exceed 2×10-6 hartrees of their numerical results.  相似文献   

13.
Combined Hartree‐Fock‐Roothaan calculations have been performed using noninteger n Slater type orbitals for the ground states of the lowest electron configurations 1s22s22pn (2 ≤ n ≤ 6) for negative ions of B, C, N, O and F. These results are compared with the corresponding results obtained from the use of integer n Slater type orbitals. All of the nonlinear parameters are fully optimized. The results of calculation of coupling‐projection coefficients, orbital and total energies and virial ratios are presented. It is shown that the noninteger n Slater type orbitals, in general, improve the orbital energies.  相似文献   

14.
Using complete orthonormal sets of Ψα-exponential type orbitals (Ψα-ETOs, α =1, 0, −1, −2, ...) introduced by the author, the series expansion formulae are derived for the two-center integer and noninteger n STO (ISTO and NISTO) charge densities in terms of integer n STOs at a third center. The expansion coefficients occurring in these relations are presented through the two-center overlap integrals between STOs with integer and noninteger principal quantum numbers. The general formulae obtained for the STO charge densities are utilized for the evaluation of two-center Coulomb and hybrid integrals of NISTOs appearing in the Hartee–Fock–Roothaan approximation. The final results are expressed in terms of both the overlap integrals and the one-center basic integrals over integer n STOs. It should be noted that the result for the multi-center multielectron integrals with two-center noninteger n STO charge densities presented in this paper were not appeared in our past publications.  相似文献   

15.
This paper presents a computationally efficient formula in terms of basic overlap integrals over Slater type orbitals (STOs) for the evaluation of auxiliary function which plays a central role in calculations of multicenter molecular integrals. The basic overlap integrals are calculated with the help of recurrence relations. The resulting simple analytical formula for the auxiliary function is completely general for p a ≤ 1.2 and arbitrary values of parameters p and pt. The efficiency of calculation of auxiliary function is compared with other method.  相似文献   

16.
Multicenter electric multipole moment integrals over Slater type orbitals with integer and noninteger principal quantum numbers are expressed in terms of overlap integrals. The computer results for the integer case agree best with the prior literature. The accuracy of the computer results for noninteger case is not compared with the literature due to the lack of relevant literature, but the limit of the noninteger case is compared with the integer case and good agreement is achieved for wide changes in the relevant molecular parameters.  相似文献   

17.
Closed formulas are established for the magnetic multipole moment integrals of integer and noninteger n Slater‐type orbitals (ISTOs and NISTOs) in terms of electric multipole moment integrals for which the analytic expressions through the overlap integrals with ISTOs and NISTOs are derived. The overlap integrals are evaluated by the use of auxiliary functions. Using the derived expressions the multipole moment integrals, and therefore the electric and magnetic properties of molecules, can be evaluated most efficiently and accurately. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

18.
GUMUS  Sedat OZDOGAN  Telhat 《中国化学》2004,22(11):1262-1266
Hartree-Fock-Roothaan (HFR) calculations for ground states of some atoms, i.e. He, Be, Ne, Ar, and Kr have been performed using minimal basis sets of Slater type orbitals (STOs) with integer and noninteger principal quantum numbers (integer n-STOs and noninteger n-STOs). The obtained total energies for these atoms using minimal basis sets of integer n-STOs are in good agreement with those in the previous literature. On the other hand, for the case of minimal basis sets of noninteger n-STOs, although the calculated total energies of these atoms agree well with the results in literature, some striking results have been obtained for atoms Ar and Kr. Our computational resuits for the energies of atoms Ar and Kr are slightly better than those in literature, by amount of 0.00222 and 0.000054 a.u., respectively. The improvement in the energies of atoms Ar and Kr may result from the efficient calculations of one-center two-electron integrals over noninteger n-STOs. For some atomic ions in their ground state, HFR calculations have been carried out using minimal basis sets of noninteger n-STOs. The obtained total energies for these atomic ions are substantially lower than those available in literature.  相似文献   

19.
A new approach for evaluating the four‐center bielectronic integrals (12|34), involving 1s Slater‐type orbitals, is presented. The method uses the multiplication theorem for Bessel functions. The bielectronic integral is expressed in terms of a finite sum of functions, and a scaling parameter is introduced. In the present work, the scaling parameter used is an average. The results show that the first term in the sum is always the principal contribution, and the remainder has a corrective character. The whole scheme and its numerical trend are understood on the basis of a theorem recently proved. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号