首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For wave propagation in a slowly varying waveguide, it is necessary to solve the Helmholtz equation in a domain that is much larger than the typical wavelength. Standard finite difference and finite element methods must resolve the small oscillatory behavior of the wave field and are prohibitively expensive for practical applications. A popular method is to approximate the waveguide by segments that are uniform in the propagation direction and use separation of variables in each segment. For a slowly varying waveguide, it is possible that the length of such a segment is much larger than the typical wavelength. To reduce memory requirements, it is advantageous to reformulate the boundary value problem of the Helmholtz equation as an initial value problem using a pair of operators. Such an operator-marching scheme can also be solved with the piecewise uniform approximation of the waveguide. This is related to the second-order midpoint exponential method for a system of linear ODEs. In this paper, we develop a fourth-order operator-marching scheme for the Helmholtz equation using a fourth-order Magnus method.  相似文献   

2.
We present a new finite volume scheme for anisotropic heterogeneous diffusion problems on unstructured irregular grids, which simultaneously gives an approximation of the solution and of its gradient. The approximate solution is shown to converge to the continuous one as the size of the mesh tends to 0, and an error estimate is given. An easy implementation method is then proposed, and the efficiency of the scheme is shown on various types of grids and for various diffusion matrices.  相似文献   

3.
In this paper we consider the linear equation a1p1+ a2p2 = n in prime variables pi and estimate the numerical value of a relevant constant in the upper bound for small prime solutions of the above equation in terms of max ai.  相似文献   

4.
In this paper, a high-order and fast numerical method is investigated for the time-fractional Black-Scholes equation. In order to deal with the typical weak initial singularity of the solution, we construct a finite difference scheme with variable time steps, where the fractional derivative is approximated by the nonuniform Alikhanov formula and the sum-of-exponentials (SOE) technique. In the spatial direction, an average approximation with fourth-order accuracy is employed. The stability and the convergence with second order in time and fourth order in space of the proposed scheme are religiously derived by the energy method. Numerical examples are given to demonstrate the theoretical statement.  相似文献   

5.
A mixed boundary value problem for a singularly perturbed reaction-diffusion equation in a square is considered. A Neumann condition is specified on one side of the square, and a Dirichlet condition is set on the other three. It is assumed that the coefficient of the equation, its right-hand side, and the boundary values of the desired solution or its normal derivative on the sides of the square are smooth enough to ensure the required smoothness of the solution in a closed domain outside the neighborhoods of the corner points. No compatibility conditions are assumed to hold at the corner points. Under these assumptions, the desired solution in the entire closed domain is of limited smoothness: it belongs only to the Hölder class C μ, where μ ∈ (0, 1) is arbitrary. In the domain, a nonuniform rectangular mesh is introduced that is refined in the boundary domain and depends on a small parameter. The numerical solution to the problem is based on the classical five-point approximation of the equation and a four-point approximation of the Neumann boundary condition. A mesh refinement rule is described under which the approximate solution converges to the exact one uniformly with respect to the small parameter in the L h norm. The convergence rate is O(N ?2ln2 N), where N is the number of mesh nodes in each coordinate direction. The parameter-uniform convergence of difference schemes for mixed problems without compatibility conditions at corner points was not previously analyzed.  相似文献   

6.
A new mixed scheme which combines the variation of constants and the H 1-Galerkin mixed finite element method is constructed for nonlinear Sobolev equation with nonlinear convection term. Optimal error estimates are derived for both semidiscrete and fully discrete schemes. Finally, some numerical results are given to confirm the theoretical analysis of the proposed method.  相似文献   

7.
In this work, four numerical time‐splitting methods are proposed for the (1 + 1)‐dimensional nonlinear Dirac equation. All of these methods (or schemes) are proved to satisfy the charge conservation in the discrete level. To enhance the computation efficiency, the block Thomas algorithm is adopted. Numerical experiments are given to test the accuracy order for these schemes, to simulate numerically the binary collision including two standing waves and two moving solitons, meanwhile, the dynamic properties for the nonlinear Dirac equation are discussed. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1582–1602, 2017  相似文献   

8.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

9.
A new numerical path integration method based on bubble grids for nonlinear dynamical systems is presented in this paper. The ordinary differential equations for the first and second order moments are derived on the basis of the Gaussian closure method. Then the probability density values on the bubble nodes in the computational domain can be calculated via the obtained method. The good performance of the resulting method is finally shown in the numerical examples by using some specific nonlinear dynamical systems: Duffing oscillator subjected to harmonic and stochastic excitations, and Duffing–Rayleigh oscillator subjected to harmonic and stochastic excitations.  相似文献   

10.
In this paper, we propose a robust semi-explicit difference scheme for solving the Kuramoto–Tsuzuki equation with homogeneous boundary conditions. Because the prior estimate in L-norm of the numerical solutions is very hard to obtain directly, the proofs of convergence and stability are difficult for the difference scheme. In this paper, we first prove the second-order convergence in L2-norm of the difference scheme by an induction argument, then obtain the estimate in L-norm of the numerical solutions. Furthermore, based on the estimate in L-norm, we prove that the scheme is also convergent with second order in L-norm. Numerical examples verify the correction of the theoretical analysis.  相似文献   

11.
This article proposes a new unconditionally stable scheme to solve one‐dimensional telegraph equation using weighted Laguerre polynomials. Unlike other numerical schemes, the time derivatives in the equation can be expanded analytically based on the Laguerre polynomials and basis functions. By applying a Galerkin temporal testing procedure and using the orthogonal property of weighted Laguerre polynomials, the time variable can be eliminated from computations, which results in an implicit equation. After solving the equation recursively one can obtain the numerical results of telegraph equation by using the expanded coefficients. Some numerical examples are considered to validate the accuracy and stability of this proposed scheme, and the results are compared with some existing numerical schemes.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1603–1615, 2017  相似文献   

12.
We consider the adaptive lowest‐order boundary element method based on isotropic mesh refinement for the weakly‐singular integral equation for the three‐dimensional Laplacian. The proposed scheme resolves both, possible singularities of the solution as well as of the given data. The implementation thus only deals with discrete integral operators, that is, matrices. We prove that the usual adaptive mesh‐refining algorithm drives the corresponding error estimator to zero. Under an appropriate saturation assumption which is observed empirically, the sequence of discrete solutions thus tends to the exact solution within the energy norm. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
A predictor–corrector (P-C) scheme is applied successfully to a nonlinear method arising from the use of rational approximants to the matrix-exponential term in a three-time level recurrence relation. The resulting nonlinear finite-difference scheme, which is analyzed for local truncation error and stability, is solved using a P-C scheme, in which the predictor and the corrector are explicit schemes of order 2. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. The behaviour of the P-C/MPC schemes is tested numerically on the Boussinesq equation already known from the bibliography free of boundary conditions. The numerical results are derived for both the bad and the good Boussinesq equation and conclusions from the relevant known results are derived.   相似文献   

14.
In this paper, we present a numerical scheme for the solution of viscous Cahn–Hilliard equation. The scheme is based on Adomian's decomposition approach and the solutions are calculated in the form of a convergent series with easily computable components. Some numerical examples are presented. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

15.
16.
17.
This work presents a variational multiscale method based on polynomial bubble functions as subgrid scale and a numerical implementation based on two local Gauss integrations. This method can be implemented easily and efficiently for the convection-dominated problem. Static condensation of the bubbles suggests the stability of the method and we establish its global convergence. Representative numerical tests are presented.  相似文献   

18.
In this paper, we extend our previous work (M.-C. Lai, A simple compact fourth-order Poisson solver on polar geometry, J. Comput. Phys. 182 (2002) 337–345) to 3D cases. More precisely, we present a spectral/finite difference scheme for Poisson equation in cylindrical coordinates. The scheme relies on the truncated Fourier series expansion, where the partial differential equations of Fourier coefficients are solved by a formally fourth-order accurate compact difference discretization. Here the formal fourth-order accuracy means that the scheme is exactly fourth-order accurate while the poles are excluded and is third-order accurate otherwise. Despite the degradation of one order of accuracy due to the presence of poles, the scheme handles the poles naturally; thus, no pole condition is needed. The resulting linear system is then solved by the Bi-CGSTAB method with the preconditioner arising from the second-order discretization which shows the scalability with the problem size.  相似文献   

19.
Based on the coupling of the natural boundary integral method and the finite elements method, we mainly investigate the numerical solution of Neumann problem of harmonic equation in an exterior elliptic. Using our trigonometric wavelets and Galerkin method, there obtained stiffness matrix is symmetrical and circulant, which lead us to a fast numerical method based on fast Fourier transform. Furthermore, we do not need to compute the entries of the stiffness matrix. On the other hand, we prove that the numerical solution possesses exponential convergence rate. Especially, examples state that our method still has good accuracy for small j when the solution u 0(θ) is almost singular.  相似文献   

20.
In this paper, we employ the boundary-only meshfree method to find out numerical solution of the classical Boussinesq equation in one dimension. The proposed method in the current paper is a combination of boundary knot method and meshless analog equation method. The boundary knot technique is an integration free, boundary-only, meshless method which is used to avoid the known disadvantages of the method of fundamental solution. Also, we use the meshless analog equation method to replace the nonlinear governing equation with an equivalent nonhomogeneous linear equation. A predictor-corrector scheme is proposed to solve the resulted differential equation of the collocation. The numerical results and conclusions are obtained for both the ‘good’ and the ‘bad’ Boussinesq equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号