首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Although it is known that low signal-to-noise ratio (SNR) can affect tensor metrics, few studies reporting disease or treatment effects on fractional anisotropy (FA) report SNR; the implicit assumption is that SNR is adequate. However, the level at which low SNR causes bias in FA may vary with tissue FA, field strength and analytical methodology. We determined the SNR thresholds at 1.5 T vs. 3 T in regions of white matter (WM) with different FA and compared FA derived using manual region-of-interest (ROI) analysis to tract-based spatial statistics (TBSS), an operator-independent whole-brain analysis tool. Using ROI analysis, SNR thresholds on our hardware-software magnetic resonance platforms were 25 at 1.5 T and 20 at 3 T in the callosal genu (CG), 40 at 1.5 and 3 T in the anterior corona radiata (ACR), and 50 at 1.5 T and 70 at 3 T in the putamen (PUT). Using TBSS, SNR thresholds were 20 at 1.5 T and 3 T in the CG, and 35 at 1.5 T and 40 at 3 T in the ACR. Below these thresholds, the mean FA increased logarithmically, and the standard deviations widened. Achieving bias-free SNR in the PUT required at least nine acquisitions at 1.5 T and six acquisitions at 3 T. In the CG and ACR, bias-free SNR was achieved with at least three acquisitions at 1.5 T and one acquisition at 3 T. Using diffusion tensor imaging (DTI) to study regions of low FA, e.g., basal ganglia, cerebral cortex, and WM in the abnormal brain, SNR should be documented. SNR thresholds below which FA is biased varied with the analytical technique, inherent tissue FA and field strength. Studies using DTI to study WM injury should document that bias-free SNR has been achieved in the region of the brain being studied as part of quality control.  相似文献   

2.
q-Space diffusion MRI (QSI) provides a means of obtaining microstructural information about porous materials and neuronal tissues from diffusion data. However, the accuracy of this structural information depends on experimental parameters used to collect the MR data. q-Space diffusion MR performed on clinical scanners is generally collected with relatively long diffusion gradient pulses, in which the gradient pulse duration, δ, is comparable to the diffusion time, Δ. In this study, we used phantoms, consisting of ensembles of microtubes, and mathematical models to assess the effect of the ratio of the diffusion time and the duration of the diffusion pulse gradient, i.e., Δ/δ, on the MR signal attenuation vs. q, and on the measured structural information extracted therefrom. We found that for Δ/δ  1, the diffraction pattern obtained from q-space MR data are shallower than when the short gradient pulse (SGP) approximation is satisfied. For long δ the estimated compartment size is, as expected, smaller than the real size. Interestingly, for Δ/δ  1 the diffraction peaks are shifted to even higher q-values, even when δ is kept constant, giving the impression that the restricted compartments are even smaller than they are. When phantoms composed of microtubes of different diameters are used, it is more difficult to estimate the diameter distribution in this regime. Excellent agreement is found between the experimental results and simulations that explicitly account for the use of long duration gradient pulses. Using such experimental data and this mathematical framework, one can estimate the true compartment dimensions when long and finite gradient pulses are used even when Δ/δ  1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号