首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘洋  夏潇潇  谭媛元  李松 《化学学报》2020,78(3):250-255
变压吸附(PSA)制取O2的核心是吸附剂.近年来,金属有机骨架(MOFs)被认为是一种具有广阔应用前景的新型吸附剂.通过水热法制备了MIL-101(Cr)/氧化石墨烯(GO).结果表明,MIL-101(Cr)/GO-15具有更高的比表面积(3486 m2·g-1)和更大的孔体积(2.39 cm3·g-1),因此也表现出更高的O2吸附量(0.54 mmol·g-1).进一步根据理想吸附溶液理论(IAST)预测了其在O2/N2体积比为1:4混合气体中的O2/N2选择性为1.2,相比MIL-101(Cr)提高了17.65%.同时,MIL-101(Cr)/GO-15的循环利用性能更佳,经过三次O2吸脱附循环后,依然拥有高达80%的O2吸附量,具有较好的循环再生性能.  相似文献   

2.
In this work, the CO2 and N2 adsorption properties of MIL-101 metal-organic framework (MOF) and activated carbon (AC) were investigated using a standard gravimetric method within the pressure range of 0–30 bar and at four different temperatures (298, 308, 318 and 328 K). The dual-site Langmuir–Freundlich (DSLF) model was used to describe the CO2 adsorption behaviors on these two adsorbents. The diffusion coefficients and activation energy E a for diffusion of CO2 in the MIL-101 and AC samples were estimated separately. Results showed that the isosteric heat of CO2 adsorption on the MIL-101 at zero loading was much higher than that on the AC due to a much stronger interaction between CO2 molecule and the unsaturated metal sites Cr3+ on MIL-101. Meanwhile, the dramatically decreased isosteric heats of CO2 adsorption on MIL-101 indicated a more heterogeneous surface of MIL-101. Furthermore, the adsorption kinetic behaviors of CO2 on the two samples can be well described by the micropore diffusion model. With the increase of temperature, the diffusion coefficients of CO2 in the two samples both increased. The activation energy E a for diffusion of CO2 in MIL-101 was slightly lower than that in AC, suggesting that MIL-101 was much favorable for the CO2 adsorption. The CO2/N2 selectivities on MIL-101 and AC were separately estimated to be 13.7 and 9.2 using Henry law constant, which were much higher than those on other MOFs.  相似文献   

3.
A new application for used reverse osmosis (RO) membranes as gas separation membranes was studied. In this regard, firstly, three pretreatment procedures were used to remove the foulants from the surface of used membrane and then they were coated with polydimethylsiloxane (PDMS). The results indicated that PDMS-coated used RO membranes were capable of separating O2/N2 and CO2/N2. The maximum O2/N2 and CO2/N2 selectivities of coated membranes were 5.9 and 32.5, respectively. The O2/N2 and CO2/N2 selectivities of PDMS membrane were reported in the range of 2.1–2.2 and 11–12, respectively. Finally, an economic assessment was carried out to compare prepared PDMS coated RO membranes with commercial PPO membrane. This showed that coated membranes are less expensive than PPO membrane for CO2/N2 gas separation. The outcome of the research was a simple method for converting used RO membranes to cost effective gas separation membranes.  相似文献   

4.
The concept of fabricating hollow fibers with double-layer mixed-matrix materials using the same polymeric matrix has been demonstrated for gas separation. Polyethersulfone (PES)–beta zeolite/PES–Al2O3 dual-layer mixed-matrix hollow fiber membranes with enhanced separation performance have been fabricated. This study presents an innovative approach of utilizing low cost PES and Al2O3 to replace expensive polyimides as the supporting medium for dual-layer mixed-matrix hollow fibers and eliminating interlayer de-lamination problems. The incorporations of 20 wt% beta zeolite in the outer selective layer and 60 wt% Al2O3 in the inner layer coupled with spinning at high elongational draw ratios yield membranes with an O2/N2 selectivity of 6.89. The presence of Al2O3 particles enables the membrane to retain its porous substructure morphology in the course of annealing above the glass transition temperature of PES. Moreover, spinning at high elongational draw ratios results in the re-distribution of Al2O3 particles towards both edges of the inner layer. Not only do the permeance and selectivity of the fibers increase, but also greater mechanical properties and lower degree of shrinkages are obtained. Therefore, the combination of PES–beta zeolite and PES–Al2O3 nanoparticles with a reasonable draw ratio may be another promising approach to produce hollow fibers with double-layer mixed-matrix materials.  相似文献   

5.
Zeolite imidazole framework (ZIF-90) nanoparticles were chemically modified by grafting triptycene moieties. The modified nanoparticles were introduced into a triptycene-based polyimide as fillers to generate mixed matrix membranes (MMMs) for gas separation. The incorporation of “hook-like” triptycene moieties in both dispersed and continuous phases led to intimate contact between the two phases and thus defect-free interfacial morphology, due to the supramolecular interlocking and π–π stacking interaction between triptycene units presented in both phases. The filler/polymer solution showed shear thickening behavior due to such strong interfacial interaction. The separation performance of the prepared composite membranes was investigated as a function of filler loading and particle surface grafting density. Pure-gas permeation results showed that the gas permeabilities increased expectedly as the filler loading increased, with stable or improved selectivities. The reduced permeability relative to pristine polyimide film is likely due to the pore blockage of ZIF-90 upon grafting triptycene moieties on the particle surface. Reducing the grafting density of triptycene moieties led to improved permeability and selectivity suggesting good tunability of this series of new composite membranes. Overall, modification of nanofiller with hierarchical triptycene moieties offers a fundamentally new avenue for creation of composite membranes with unique properties in gas separations.  相似文献   

6.
Hydrophobic polysulfone UF membranes were modified with UV irradiation and hydrophilicity increasing agents. The modifications were tested with 0.5% whey-protein solution and 0.05% lysozyme solution at pH 6 and with 0.05% bovine serum albumin solution at various pH values. UV irradiation increased flux and the hydrophilicity of the membranes. The flux increases obtained varied with pH and modification agents used and could be more than 400% compared to unmodified conditions without any loss in retention. The best retentions were obtained at pH values, where both the protein and the membrane had the same charge, and a strong electrostatic repulsion was obtained. The pores enlarged to fixed sizes, which depended on the sizes of the proteins and the range of double layer forces between proteins and membranes at different states of charge density.  相似文献   

7.
The permeability of carbon dioxide (CO2) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF4], [bmim][BF4], [bmim][PF6], [bmim][Tf2N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf2N] membrane. The membrane of [bmim][PF6] presents the lowest permeability.The separation coefficient between CO2 and N2 through the ionic liquid membranes was also investigated at the volume fraction of CO2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF4] and [bmim][BF4] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf2N] membrane which presents the highest permeability of CO2.  相似文献   

8.
Integrally skinned asymmetric polysulfone membranes were prepared from originally dense films inducing asymmetry by the formation of the porous layer adding to one side of the membranes chloroform and supercritical CO2 (SCCO2), and then allowing the SCCO2 expansion to occur. The influence of the chloroform/polysulfone mass ratio (g CH3Cl/g PSF), SCCO2 density and depressurization rate over the thickness of both the porous and the dense skin layers, the morphology of the porous support and the pure O2 and N2 permeability and selectivity performance were studied.The results show that it is possible to induce a very-controlled asymmetry in a dense film following the procedure described in this work and as expected, the thickness of the porous layer increases while the dense skin layer decreases as the chloroform/polysulfone mass ratio increases. Images of the porous layer show that the average-pore size decreases at high SCCO2 densities and slightly decreases with increasing the CO2 depressurization rates. The O2 and N2 permeability coefficients, measured at 35 °C and 2 bar, for the polysulfone asymmetric membranes are practically the same of those determined in dense films, suggesting that the dense skins are essentially defect-free of pinholes.  相似文献   

9.
Matrimid/polysulfone (PSf) dual-layer hollow fiber membranes were fabricated by using co-extrusion and dry-jet wet-spinning phase-inversion techniques. The effects of the spinning dope composition, spinneret dimension, spinneret temperature and the air gap distance on the hollow fiber membranes separation performance were studied. Aging phenomenon was also studied. After coated by 3 wt% silicon solution, the hollow fiber membranes have an O2/N2 selectivity of 7.55 at 25 °C, 506.625 kPa which exceeds the intrinsic value of Matrimid. The membranes have an O2 permeance of 9.36 GPU with an apparent dense-layer thickness of 1421 Å calculated from the O2 permeability. SEM images show the high porosity underneath the dense skin. It indicates that non-solvent addition is not necessary in the inner spinning dope to induce the macroviod formation. The binodals of the Matrimid/solvent/H2O and PSf/solvent/H2O indicate that the composition of the spinning dope plays an important role in the structure and the gas separation performance of the dual-layer hollow fiber membranes. The delayed demixing of the inner spinning dope may fabricate low resistance support layers in the dual-layer hollow fiber membranes.  相似文献   

10.
Micellar-enhanced ultrafiltration (MEUF) of phenol and a cationic surfactant, cetylpyridinium chloride (CPC), is studied using two polysulfone membranes of 5- and 50-kDa molecular weight cutoff (MWCO) and two ceramic membranes of 15- and 50-kDa MWCO. Filtrations are run under laminar cross-flow and steady-state conditions. The effect of operation variables (pressure and retentate flux) and membrane properties (nature and MWCO) on permeate flux, surfactant, and phenol rejections is analyzed. The permeate flux depends, among other variables, on the fouling favored by membrane-micelle interactions, which are strongest in the 50-kDa MWCO ceramic membrane. On the other hand, surfactant rejection is mainly determined by the pore size and influenced by the pressure for both 50-kDa MWCO membranes. An equilibrium distribution constant, K(s), of phenol between surfactant micelles and water is calculated. Its value is not significantly affected by operation conditions and membrane type. K(s) is also approximately 20% lower than the value determined in a previous work with batch dead-end ultrafiltration.  相似文献   

11.
Mesoporous MOFs MIL-100 and MIL-101 adsorb huge amounts of CO2 and CH4. Characterization was performed using both manometry and gravimetry in different laboratories for isotherms coupled with microcalorimetry and FTIR to specify the gas-solid interactions. In particular, the uptake of carbon dioxide in MIL-101 has been shown to occur with a record capacity of 40 mmol g(-1) or 390 cm3STP cm(-3) at 5 MPa and 303 K.  相似文献   

12.
The influence of inorganic filler TiO2 nanoparticles on the morphology and properties of polysulfone (PS) ultrafiltration membranes was investigated. PS/TiO2 composite membranes were prepared by a phase‐inversion method. TiO2 nanoparticles modified by sodium dodecyl sulfate were uniformly dispersed in an 18 wt % PS casting solution. The addition of TiO2 resulted in an increase in the pore density and porosity of the membrane skin layer. The pore size distribution changed from the log‐normal distribution to the bimodal distribution because of the presence of TiO2 nanoparticles, and some large pores were observed when the concentration of the filler was over 3 wt %. The skin layer was gradually thickened; meanwhile, the morphology sublayer changed from macrovoids to spongelike pores, in comparison with PS membranes without the filler. The addition of TiO2 also induced increases in the hydrophilicity, mechanical strength, and thermal stability. The ultrafiltration experiments showed when the concentration of TiO2 was less than 2 wt %, the permeability and rejection of the membrane was enhanced and then decreased drastically with a higher filler concentration (>3%). © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 879–887, 2006  相似文献   

13.
采用实验与分子模拟结合的方法研究298 K下CO_2在氨基改性得到的MIL-101(Cr)-NH_2和MIL-101(Cr)-ED(ED:乙二胺)上的吸附性能。比较MIL-101(Cr)、MIL-101(Cr)-NH_2和MIL-101(Cr)-ED的吸附等温线与吸附热的结果,表明采用直接合成改性法得到的MIL-101(Cr)-NH_2比采用合成后再改性得到的MIL-101(Cr)-ED有更高的CO_2吸附容量。进一步比较密度分布图和径向密度分布曲线,分析CO_2在氨基改性MIL-101(Cr)中的吸附位,表明在低压下CO_2首先吸附在MIL-101(Cr)微孔的超级四面体中,随着吸附压力的增大逐渐填充到更大的孔中。氨基的存在增加了CO_2的吸附位点,使MIL-101(Cr)-NH_2具有较高CO_2吸附容量;同时MIL-101(Cr)-ED中的ED分子的存在增加了CO_2的吸附位点,使MIL-101(Cr)-ED也具有较高CO_2吸附容量;但是MIL-101(Cr)-ED中的ED分子占据了MIL-101(Cr)中Cr的吸附位点,使Cr对CO_2的吸附强度减弱,同时可吸附位点少于MIL-101(Cr)-NH_2,导致其对CO_2的吸附容量少于MIL-101(Cr)-NH_2。  相似文献   

14.
采用实验与分子模拟结合的方法研究298 K下CO2在氨基改性得到的MIL-101(Cr)-NH2和MIL-101(Cr)-ED(ED:乙二胺)上的吸附性能。比较MIL-101(Cr)、MIL-101(Cr)-NH2和MIL-101(Cr)-ED的吸附等温线与吸附热的结果,表明采用直接合成改性法得到的MIL-101(Cr)-NH2比采用合成后再改性得到的MIL-101(Cr)-ED有更高的CO2吸附容量。进一步比较密度分布图和径向密度分布曲线,分析CO2在氨基改性MIL-101(Cr)中的吸附位,表明在低压下CO2首先吸附在MIL-101(Cr)微孔的超级四面体中,随着吸附压力的增大逐渐填充到更大的孔中。氨基的存在增加了CO2的吸附位点,使MIL-101(Cr)-NH2具有较高CO2吸附容量;同时MIL-101(Cr)-ED中的ED分子的存在增加了CO2的吸附位点,使MIL-101(Cr)-ED也具有较高CO2吸附容量;但是MIL-101(Cr)-ED中的ED分子占据了MIL-101(Cr)中Cr的吸附位点,使Cr对CO2的吸附强度减弱,同时可吸附位点少于MIL-101(Cr)-NH2,导致其对CO2的吸附容量少于MIL-101(Cr)-NH2。  相似文献   

15.
In this study, novel molecularly imprinted open porous membranes(MIOPMs) were prepared using the Pickering HIPEs template method and molecular imprinting technology for selective adsorption and separation of methyl 4-hydroxybenzoate(M4HB). The template M4 HB, functional monomers,crosslinker and plastifier 2-ethylhexyl acrylate(2-EHA) were contained in the oil phase. Hydrophobic silica nanoparticles(HNP-Si O2) were employed as a stabilizer to establish stable W/O Pickering HIPEs with nonionic surfactant sorbitantrioleate(Span 85). The results of SEM and FTIR indicated that the optimal MIOPMs were prepared successfully and possessed open and interconnecting pores. Then, the MIOPMs were used as sorbents for M4 HB. The correlation coefficient(R2) values for the Langmuir–Freundlich isotherm model and pseudo-second-order kinetic model fitting to the adsorption equilibrium and kinetic data respectively were all higher than 0.95. The maximum adsorption capacity and the time of rapid adsorption for MIOPM4 were 4.146 mg g 1and 100 min, respectively. In addition, the permeability separation factor of MIOPMs for M4 HB compared to a structurally related analog methyl2-hydroxybenzoate(M2HB) could reach 3.122.  相似文献   

16.
A novel oily wastewater treatment strategy of simultaneously removing insoluble oily compounds and soluble organic pollutants is highly desirable. Herein, a hierarchical Ag2O/TiO2 heterojunction-loaded CuC2O4 nanosheet-decorated copper mesh (Ag2O/TiO2@CuC2O4 CM) was rationally designed by a combination of chemical etching and solvothermal deposition methods to implement the strategy. The Ag2O/TiO2@CuC2O4 CM with hierarchical nanostructures derived from hydrophilic CuC2O4 nanosheets and belt-like Ag2O/TiO2 heterojunction was proven to exhibit superior superhydrophilicity, underwater superoleophobicity, and photocatalytic ability, which greatly improved the antipollution ability of the substrate mesh. The as-fabricated mesh with a reasonable mesh number can efficiently separate oil/water mixtures with an ultra-high flux (~70 kL m?2 h?1) and surfactant-stabilized oil-in-water emulsions with an ultra-low residue oil content in filtrate (<60 mg L?1). More importantly, the loaded heterojunction on the CM showed a high photodegradation efficiency of about 94.1% toward soluble methylene blue and self-cleaning ability to regenerate oil-contaminated mesh within 60 min under visible light irradiation by photo-Fenton-like reaction. Besides, the favorable salt resistance, acid and alkali resistance, and stability of the CM for long-term use were also observed. Thus, this study provides a new way for the treatment of complex oily wastewater.  相似文献   

17.
Interfacially formed poly(N,N-dimethylaminoethyl methacrylate)/polysulfone (PDMAEMA/PSF) composite membranes were developed for CO2/N2 separation. A layer of PDMAEMA was deposited on a microporous PSF substrate by the solution coating technique, followed by crosslinking with p-xylylene dichloride (XDC) at the interface between the PDMAEMA solid layer and the crosslinking solution. The hydrophilicity and surface free energy of the membranes were analyzed by contact angle measurements with different probe liquids. The permselectivity of the membrane was shown to be affected by the PDMAEMA deposition time, interfacial crosslinking reaction time, and the PDMAEMA and XDC concentrations in the polymer coating solution and the crosslinking solution, respectively. The composite membrane showed a CO2 permeance of 85 GPU and a CO2/N2 ideal separation factor of 50 at 23 °C and 0.41 MPa of CO2 feed pressure.  相似文献   

18.
Russian Journal of Electrochemistry - A highly sensitive melamine electrochemical sensor was successfully constructed by self-assembling based on the composite of chitosan with polyvinyl...  相似文献   

19.
Perfluorosulfonic acid/Polysulfone(PFSA/PSf) hollow fiber composite membranes have been prepared by dip-coating method using PSf ultrafiltration (UF) membrane as substrate with recovered PFSA. The composite membranes were applied to the pervaporation separation of 95% ethanol (EtOH)/H2O mixture. SEM images show that the thickness of the PFSA skin layer of the composite membranes is about 2 μm, much thinner than those of other PFSA composite membranes revealed in the literatures. Effects of annealing temperature, coating solution concentration and counter-ions of PFSA on the pervaporation performances of the composite membranes were investigated. The total flux decreases and separation factor increases with the increase of annealing temperature. The highest permeation flux of 3230 g m?2 h?1 and a separation factor of 5.4 is obtained for the composite membrane annealed at 80°C. The lowest permeation flux of 396 g m?2 h?1 and a separation factor of 27.7 is obtained for the composite membrane annealed at 160°C. The permeation performances of the PFSA/PSf composite membrane are evidently influenced by the counter-ions of PFSA. The flux sequence of the PFSA/PSf composite membranes with different counter-ions is H+>Li+>Ca2+>Mg2+>Na+>K+>Ba2+>Fe3+>Al3+, and the separation factor sequence is H+<Li+<Al3+<Na+<Mg2+<Ca2+<K+<Ba2+<Fe3+. The apparent activation energy ΔE app values of the composite membranes with different counter-ions were calculated by Arrhenius law. The sequence of ΔE app values for the membranes with monovalent counter-ions is Li+>Na+>K+. There are very little variations of ΔE app values between the composite membranes with three divalent counter-ions (Mg2+, Ca2+ and Ba2+), and the ΔE app values of the composite membranes with two trivalent counter-ions (Fe3+ and Al3+) are relatively high.  相似文献   

20.
Perfluorosulfonic acid/Polysulfone(PFSA/PSf) hollow fiber composite membranes have been prepared by dip-coating method using PSf ultrafiltration(UF) membrane as substrate with recovered PFSA.The composite membranes were applied to the pervaporation separation of 95% ethanol(EtOH)/H2O mixture.SEM images show that the thickness of the PFSA skin layer of the composite membranes is about 2 μm,much thinner than those of other PFSA composite membranes revealed in the literatures.Effects of annealing temperature,c...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号