首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

To optimize the navigator-gating technique for the acquisition of high-quality three-dimensional spoiled gradient-recalled echo (3D SPGR) images of the liver during free breathing.

Materials and methods

Ten healthy volunteers underwent 3D SPGR magnetic resonance imaging of the liver using a conventional navigator-gated 3D SPGR (cNAV-3D-SPGR) sequence or an enhanced navigator-gated 3D SPGR (eNAV-3D-SPGR) sequence. No exogenous contrast agent was used. A 20-ms wait period was inserted between the 3D SPGR acquisition component and navigator component of the eNAV-3D-SPGR sequence to allow T1 recovery. Visual evaluation and calculation of the signal-to-noise ratio were performed to compare image quality between the imaging techniques.

Result

The eNAV-3D-SPGR sequence provided better noise properties than the cNAV-3D-SPGR sequence visually and quantitatively. Navigator gating with an acceptance window of 2 mm effectively inhibited respiratory motion artifacts. The widening of the window to 6 mm shortened the acquisition time but increased motion artifacts, resulting in degradation of overall image quality. Neither slice tracking nor incorporation of short breath holding successfully compensated for the widening of the window.

Conclusion

The eNAV-3D-SPGR sequence with an acceptance window of 2 mm provides high-quality 3D SPGR images of the liver.  相似文献   

2.

Objective

Development of a fast 3D high-resolution magnetic resonance imaging (MRI) protocol for improved carotid artery plaque imaging.

Methods

Two patients with carotid atherosclerosis disease underwent 3D high-resolution MRI which included time-of-flight and T1-weighted variable flip angle, fast-spin-echo (FSE) imaging, pre- and post-intravenous gadolinium-based contrast agent administration.

Results

Good quality images with intrinsic blood suppression were obtained pre- and post-contrast administration using a 3D FSE sequence. The plaque burden, lipid core volume, hemorrhage volume and fibrous cap thickness were well determined.

Conclusions

3D high-resolution MR imaging of carotid plaque using TOF and 3D FSE can achieve high isotropic resolution, large coverage, and excellent image quality within a short acquisition time.  相似文献   

3.

Purpose

Device tracking is crucial for interventional MRI (iMRI) because conventional device materials do not contribute to the MR signal, may cause susceptibility artifacts and are generally invisible if moved out of the scan plane. A robust method for wireless tracking and dynamic guidance of interventional devices equipped with wirelessly connected resonant circuits (wRC) is presented.

Methods

The proposed method uses weak spatially-selective excitation pulses with very low flip angle (0.3°), a Hadamard multiplexed tracking scheme and employs phase-field dithering to obtain the 3D position of a wRC. RF induced heating experiments (ASTM protocol) and balloon angioplasties of the iliac artery were conducted in a perfused vascular phantom and three Thiel soft-embalmed human cadavers.

Results

Device tip tracking was interleaved with various user-selectable fast pulse sequences receiving a geometry update from the tracking kernel in less than 30 ms. Integrating phase-field dithering significantly improved our tracking robustness for catheters with small diameters (4–6 French). The volume root mean square distance error was 2.81 mm (standard deviation: 1.31 mm). No significant RF induced heating (< 0.6 °C) was detected during heating experiments.

Conclusion

This tip tracking approach provides flexible, fast and robust feedback loop, intuitive iMRI scanner interaction, does not constrain the physician and delivers very low specific absorption rates. Devices with wRC can be exchanged during a procedure without modifications to the iMRI setup or the pulse sequence. A drawback of our current implementation is that position information is available for a single tracking coil only. This was satisfactory for balloon angioplasties of the iliac artery, but further studies are required for complex navigation and catheter shapes before animal trials and clinical application.  相似文献   

4.

Purpose

The goal of this work was to develop a fast 3D chemical shift imaging technique for the noninvasive measurement of hyperpolarized 13C-labeled substrates and metabolic products at low concentration.

Materials and Methods

Multiple echo 3D balanced steady state magnetic resonance imaging (ME-3DbSSFP) was performed in vitro on a syringe containing hyperpolarized [1,3,3-2H3; 1-13C]2-hydroxyethylpropionate (HEP) adjacent to a 13C-enriched acetate phantom, and in vivo on a rat before and after intravenous injection of hyperpolarized HEP at 1.5 T. Chemical shift images of the hyperpolarized HEP were derived from the multiple echo data by Fourier transformation along the echoes on a voxel by voxel basis for each slice of the 3D data set.

Results

ME-3DbSSFP imaging was able to provide chemical shift images of hyperpolarized HEP in vitro, and in a rat with isotropic 7-mm spatial resolution, 93 Hz spectral resolution and 16-s temporal resolution for a period greater than 45 s.

Conclusion

Multiple echo 3D bSSFP imaging can provide chemical shift images of hyperpolarized 13C-labeled compounds in vivo with relatively high spatial resolution and moderate spectral resolution. The increased signal-to-noise ratio of this 3D technique will enable the detection of hyperpolarized 13C-labeled metabolites at lower concentrations as compared to a 2D technique.  相似文献   

5.

Objective

3D Time-of-flight (TOF) magnetic resonance angiography is commonly used for vascular analyses. A quantification of longitudinal morphological changes usually requires the registration of TOF image sequences acquired at different time points. The aim of this study was to evaluate the precision of different 3D rigid registration setups such that an optimal quantification of morphological changes can be achieved.

Methods

Eight different rigid registration techniques were implemented and evaluated in this study using the target registration error (TRE) calculated based on 554 landmarks defined in twenty TOF datasets. The registration techniques differed in integration of brain and vessel segmentation masks and usage of a multi-resolution framework. Furthermore, the benefit of a prior volume-of-interest definition for registration accuracy was evaluated.

Results

The results revealed that the highest registration accuracies can be achieved using a multi-resolution framework and a cerebrovascular segmentation as mask. Numerically, a mean TRE of 1.1 mm was calculated. If applicable, a prior definition of a volume-of-interest allows a reduction of the TRE to only 0.6 mm.

Conclusion

TOF datasets should be registered using vessel segmentations as mask, multi-resolution framework and previous volume-of-interest definition if possible to obtain the highest registration precision. This is especially the case for longitudinal datasets that are separated by several months while the registration technique seems less important for datasets that are only separated by a few days.  相似文献   

6.

Background

Using magnetic resonance (MR) imaging for navigating catheters has several advantages when compared with the current “gold standard” modality of X-ray imaging. A significant drawback to interventional MR is inferior temporal and spatial resolutions, as high spatial resolution images cannot be collected and displayed at rates equal to X-ray imaging. In particular, passive MR catheter tracking experiments that use positive contrast mechanisms have poor temporal imaging rates and signal-to-noise ratio. As a result, with passive methods, it is often difficult to reconstruct motion artifact-free tracking images from areas with motion, such as the thoracic cavity.

Methods

In this study, several accelerated MR acquisition strategies, including parallel imaging and compressed sensing (CS), were evaluated to determine which method is most effective at improving the frame rate and passive detection of catheters in regions of physiological motion. Device navigation was performed both in vitro, through the aortic arch of an anthropomorphic chest phantom, and in vivo from the femoral artery, up the descending aorta into the supra-aortic branching vessels in canines.

Results and Discussion

The different parallel imaging methods produced images of low quality. CS with a two-fold acceleration was found to be the most effective method for generating tracking images, improving the image frame rate to 5.2 Hz, while maintaining a relatively high in-plane resolution. Using CS, motion artifact was decreased and the catheters were visualized with good conspicuity near the heart.

Conclusions

The improvement in the imaging frame rate by image acceleration was sufficient to overcome motion artifacts and to better visualize catheters in the thoracic cavity with passive tracking. CS preformed best at tracking. Navigation with passive MR catheter tracking was demonstrated from the femoral artery to the carotid artery in canines.  相似文献   

7.

Purpose

The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques.

Methods

The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods.

Results

The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions.

Conclusion

The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA.  相似文献   

8.

Purpose

To investigate an effective time-resolved variable-density random undersampling scheme combined with an efficient parallel image reconstruction method for highly accelerated aortic 4D flow MR imaging with high reconstruction accuracy.

Materials and Methods

Variable-density Poisson-disk sampling (vPDS) was applied in both the phase-slice encoding plane and the temporal domain to accelerate the time-resolved 3D Cartesian acquisition of flow imaging. In order to generate an improved initial solution for the iterative self-consistent parallel imaging method (SPIRiT), a sample-selective view sharing reconstruction for time-resolved random undersampling (STIRRUP) was introduced. The performance of different undersampling and image reconstruction schemes were evaluated by retrospectively applying those to fully sampled data sets obtained from three healthy subjects and a flow phantom.

Results

Undersampling pattern based on the combination of time-resolved vPDS, the temporal sharing scheme STIRRUP, and parallel imaging SPIRiT, were able to achieve 6-fold accelerated 4D flow MRI with high accuracy using a small number of coils (N = 5). The normalized root mean square error between aorta flow waveforms obtained with the acceleration method and the fully sampled data in three healthy subjects was 0.04 ± 0.02, and the difference in peak-systolic mean velocity was − 0.29 ± 2.56 cm/s.

Conclusion

Qualitative and quantitative evaluation of our preliminary results demonstrate that time-resolved variable-density random sampling is efficient for highly accelerating 4D flow imaging while maintaining image reconstruction accuracy.  相似文献   

9.

Purpose

Greater spatial resolution in intracranial three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA) is possible at higher field strengths, due to the increased contrast-to-noise ratio (CNR) from the higher signal-to-noise ratio and the improved background suppression. However, at very high fields, spatial resolution is limited in practice by the acquisition time required for sequential phase encoding. In this study, we applied parallel imaging to 7T TOF MRA studies of normal volunteers and patients with vascular disease, in order to obtain very high resolution (0.12 mm3) images within a reasonable scan time.

Materials and Methods

Custom parallel imaging acquisition and reconstruction methods were developed for 7T MRA, based on generalized autocalibrating partially parallel acquisition (GRAPPA). The techniques were compared and applied to studies of seven normal volunteers and three patients with cerebrovascular disease.

Results

The technique produced high resolution studies free from discernible reconstruction artifacts in all subjects and provided excellent depiction of vascular pathology in patients.

Conclusions

7T TOF MRA with parallel imaging is a valuable noninvasive angiographic technique that can attain very high spatial resolution.  相似文献   

10.

Background

Over the past two decades elective valve-sparing aortic root replacement (V-SARR) has become more common in the treatment of patients with aortic root and ascending aortic aneurysms. Currently there are little data available to predict complications in the post-operative population. The study goal was to determine if altered flow patterns in the thoracic aorta, as measured by MRI, are associated with complications after V-SARR.

Methods

Time-resolved three-dimensional phase-contrast MRI (4D flow) was used to image 12 patients with Marfan syndrome after V-SARR. The patients were followed up for an average of 5.8 years after imaging and 8.2 years after surgery. Additionally 5 volunteers were imaged for comparison. Flow profiles were visualized during peak systole using streamlines. Wall shear stress estimates and normalized flow displacement were evaluated at multiple planes in the thoracic aorta.

Results

During the follow-up period, a single patient developed a Stanford Type B aortic dissection. At initial imaging, prior to the development of the dissection, the patient had altered flow patterns, wall shear stress estimates, and increased normalized flow displacement in the thoracic aorta in comparison to the remaining V-SARR patients and volunteers.

Conclusions

This is the first follow-up study of patients after 4D flow imaging. An aortic dissection developed in one patient with altered flow patterns and hemodynamic stresses in the thoracic aorta. These results suggest that flow and altered hemodynamics may play a role in the development of post-operative intramural hematomas and dissections.  相似文献   

11.

Objective

The purpose of this study was to analyze flow patterns in the pulmonary circulation of healthy volunteers by using 4D flow magnetic resonance imaging.

Materials and Methods

The study was approved by the local ethics committee and all subjects gave written informed consent. Eighteen volunteers underwent a 4D flow scan of the whole-heart. Two patients with congenital heart disease were also included to detect possible patterns of flow abnormalities (Patient 1: corrected transposition of great arteries (TGA); Patient 2: partial anomalous pulmonary venous return and atrial septal defect). To analyze flow patterns, 2D planes were placed on the main pulmonary artery (PA), left and right PA. Flow patterns were assessed manually by two independent viewers using vector fields, streamlines and particle traces, and semi-automatically by vorticity quantification.

Results

Two counter-rotating helices were found in the main PA of volunteers. Right-handed helical flow was detected in the right PA of 15 volunteers. Analysis of the helical flow by particles traces revealed that both helices contributed mainly to the flow in the right PA. In the patient with corrected TGA helical flow was not detected. Abnormal vortical flow was visualized in the main PA of patient 2, suggesting elevated mean PA pressure.

Conclusions

Helical flow is normally present in the main PA and right PA. 4D flow is an excellent tool to evaluate noninvasively complex blood flow patterns in the pulmonary circulation. Knowledge of normal and abnormal flow patterns might help to evaluate patients with congenital heart disease adding functional information undetectable with other imaging modalities.  相似文献   

12.

Objectives

Endometriosis is the ectopic localization of endometrial glands. Symptoms include a wide variety of chronic pelvic pain. Ovarian endometriosis represents the most frequent site of implantation followed by the Douglas pouch which is undepicted unless peritoneal fluid is present. Pelvic exams may be reported as normal in 40% of evaluations, although multiple nodularities are located in this region. Nowadays, laparoscopy represents the standard technique for endometriosis evaluation. However, magnetic resonance imaging (MRI) remains the best noninvasive technique for the evaluation of pelvic lesions. According to the importance of a precise preoperative diagnosis of deep infiltrative endometriosis involving the Douglas pouch, we evaluated feasibility of a 3-T system in the evaluation of this particular region.

Methods

We enrolled 19 women coming with either ultrasound or anamnestic suspicion of endometriosis. Pelvic MRI examination was performed on the 3-T system. We applied a standard exam protocol including pulse sequences [single-shot fast spin echo (FSE)] and high-resolution T2W and T1W FSE sequences with and without FS.

Results

MRI diagnosed posterior cul-de-sac obliteration in 15/19 patients. MRI findings were compared with laparoscopy, thus obtaining the following statistical values: mean sensitivity, specificity, positive predictive value and negative predictive value, respectively, of 93%, 75%, 93% and 75%. Moreover, we calculated an interobserver agreement k value of 0.72 with a substantial degree of agreement between two radiologists of a sensitivity value of 93% and specificity value of 75%.

Conclusions

Precise preoperative mapping of posterior cul-de-sac region is essential for a preoperative planning. In our work, the 3-T MRI was shown to be excellent in the evaluation of posterior cul-de-sac obliteration associated to an optimal evaluation of the uterosacral ligaments due to the higher contrast spatial resolution.  相似文献   

13.

Object

To evaluate the feasibility of an optimized MRI protocol based on high field imaging at 3 T in combination with accelerated data acquisition by parallel imaging for the analysis of oropharyngeal and laryngeal function.

Materials and Methods

Fast 2D gradient echo (GRE) MRI with different spatial resolutions (1.7×2.7 and 1.1×1.5 mm2) and image update rates (4 and 10 frames per second) was employed to assess pharyngeal movements and visualize swallowing via tracking of an oral contrast bolus (blueberry juice). In a study with 10 normal volunteers, image quality was semi-quantitatively graded by three independent observers with respect to the delineation of anatomical detail and depiction of oropharynx and larynx function. Additionally, the feasibility of the technique for the visualization of pathological pre- and post-surgical oropharynx and larynx function was evaluated in a patient with inspiratory stridor.

Results

Image grading demonstrated the feasibility of dynamic MRI for the assessment of normal oropharynx and larynx anatomy and function. Superior image quality (P<.05) was found for data acquisition with four frames per second and higher spatial resolution. In the patient, dynamic MRI detected pathological hypermobility of the epiglottis resulting in airway obstruction. Additional post-surgical MRI for one clinical case revealed morphological changes of the epiglottis and improved function, i.e., absence of airway obstruction and normal swallowing.

Conclusion

Results of the volunteer study demonstrated the feasibility of dynamic MRI at 3 T for the visualization of the oropharynx and larynx function during breathing, movements of the tongue and swallowing. Future studies are necessary to evaluate its clinical value compared to existing modalities based on endoscopy or radiographic techniques.  相似文献   

14.

Purpose

The purpose of the study was to evaluate the value of high-resolution three-dimensional fast imaging employing steady-state acquisition (3D FIESTA) imaging in the visualization of neurovascular relationship in patients with trigeminal neuralgia (TN).

Methods

Thirty-seven patients with unilateral typical TN underwent 3D FIESTA imaging. Neurovascular relationship at the trigeminal root entry zone was reviewed by an experienced neuroradiologist, who was blinded to the clinical details. The imaging results were compared with the operative findings in all patients.

Results

In 37 patients with TN, 3D FIESTA imaging identified surgically verified neurovascular contact in 35 of 36 symptomatic nerves. Based on surgical findings, the sensitivity and specificity of magnetic resonance (MR) imaging were 97.2% and 100%, respectively. Agreement between the position (medial, lateral, superior and inferior) of the compressing vessel relative to the trigeminal nerve identified by MR imaging and surgery was excellent (K=0.81; 95% confidence interval, 0.56–1.00). A statistically significant difference was found between the site of neurovascular contact and the clinical symptom related to the trigeminal branch (Fisher's Exact Test, P<.001).

Conclusions

Use of 3D FIESTA sequence enables accurate visualization of neurovascular contact in patients with TN. Anatomic relationships defined by this method can be useful in surgical planning and predicting surgical findings.  相似文献   

15.

Object

Although three-dimensional (3D), high-spatial resolution susceptibility-weighted imaging (SWI) appears to be valuable in the evaluation of central nervous system gliomas, several evaluation methods are proposed in the literature. The purpose of this study was to evaluate the use of 3D SWI for grading intracranial gliomas with various analysis methods.

Materials and Methods

Twenty-three patients suspected of having gliomas participated in this study. SWI was performed in addition to conventional MR sequences. In 15 cases, post-gadolinium enhanced SWI was also obtained. Imaging evaluation criteria were conventional grade, hypointensity ratio in the tumor-dominant structure of hypointensity on SWI (hemorrhage or vascular structure) and presence of abnormal enhancement surrounding the tumor.

Results

Mean grading scores of conventional grade showed no statistically significant difference among WHO grades. Mean grading scores of hypointensity ratios in the tumor were higher for WHO Grades 3 and 4 than for lower grade tumors (P=.05, Mann–Whitney U test). Hemorrhagic foci were more frequently seen in the higher grade tumor. Post-contrast susceptibility-weighted images of five of 11 WHO Grade 3 and 4 cases showed bright enhancement surrounding the tumor, suggesting a breakdown of the blood–brain barrier.

Conclusions

SWI at 3 T may be a useful method to analyze the structural characteristics of gliomas and to evaluate pathology in vivo. Assessment of hypointensity ratios in the glioma was the most preferable method in grading glioma. However, more studies, specifically concerning a suitable method for image analysis, are needed to establish SWI at 3 T as a useful tool in clinical routine.  相似文献   

16.

Purpose

To reveal the phenomenon of common bile duct (CBD) anteroposterior movement caused by inferior vena cava (IVC) pulsation depending on the cardiac cycle using cine magnetic resonance imaging.

Materials and Methods

A breath-hold trans-axial cine segmented true fast imaging with steady-state precession (trueFISP) sequence was prospectively performed on 11 healthy volunteers to observe CBD anteroposterior movement and IVC pulsation during the cardiac cycle. Changes in IVC anterior–posterior diameter and CBD location were compared using Pearson rank correlation analysis.

Results

Nine (81.8%) of 11 CBDs moved back and forth in synchronicity with IVC anterior wall motion depending on the cardiac cycle; the mean maximum and minimum IVC diameters were 16.2±2.7 and 12.9±3.1 mm, respectively. Two (18.2%) of 11 CBDs and IVC walls did not move; the mean unchanged IVC diameter was 5.3±2.1 mm. There were significant correlations between the mean change in IVC diameter and distance of CBD anteroposterior movement (2.7±2.1 and 1.8±1.4 mm, respectively, r=0.911, P<.05).

Conclusion

Many CBDs move back and forth in synchronicity with IVC pulsation depending on the cardiac cycle.  相似文献   

17.

Background and Purpose

The use of magnetic resonance imaging (MRI) to assess the vascular nature of diseases such as multiple sclerosis (MS) is a growing field of research. This work reports on the application of MR angiographic (MRA) and venographic (MRV) techniques in assessing the extracranial vasculature in MS patients.

Materials and Methods

A standardized MRI protocol containing 2D TOF-MRV and dynamic 3D contrast-enhanced (CE) MRAV was run for 170 MS patients and 40 healthy controls (HC). The cross-sectional area (CSA) of the internal jugular veins (IJVs) was measured at three neck levels in all subjects for both MRV techniques to determine the presence of venous stenoses. All data were analyzed retrospectively.

Results

For the values where both methods showed signal, the 3D method showed larger CSA measurement values compared to 2D methods in both IJVs, in both MS and HC subjects which was confirmed with student paired t-tests. Of the 170 MS patients, 93 (55%) in CE-MRAV and 103 (61%) in TOF-MRV showed stenosis in at least one IJV. The corresponding numbers for the 40 HC subjects were 2 (5%) and 4 (10%), respectively. Carotid ectasias with IJV stenosis were seen in 26 cases (15%) with 3D CE-MRAV and were not observable with 2D TOF-MRV. Carotid ectasias were not seen in the HC group. In the 2D TOF-MRV data, banding of the IJVs related to slow flow was seen in 58 (34%) MS cases and in no HC cases. MS patients showed lower average CSAs than the HC subjects.

Conclusion

The 3D CE MRAV depicted the vascular anatomy more completely than the 2D TOF-MRV. However, the 3D CE MRAV does not provide any information about the flow characteristics which are indirectly available in the 2D TOF-MRV in those cases where there is slow flow.  相似文献   

18.

Purpose

Liver iron quantification by MRI has become routine. Pixelwise (PW) fitting to the iron-mediated signal decay has some advantages but is slower and more vulnerable to noise than region-based techniques. We present a fast, pseudo-pixelwise mapping (PPWM) algorithm.

Materials and Methods

The PPWM algorithm divides the entire liver into non-contiguous groups of pixels sorted by rapid relative relaxivity estimates. Pixels within each group of like-relaxivity were binned and fit using a Levenberg–Marquadt algorithm.

Results

The developed algorithm worked about 30 times faster than the traditional PW approach and generated R2* maps qualitatively and quantitatively similar. No systematic difference was observed in median R2* values with a coefficient of variability (CoV) of 2.4%. Intra-observer and inter-observer errors were also under 2.5%. Small systematic differences were observed in the right tail of the R2* distribution resulting in slightly lower mean R2* values (CoV of 4.2%) and moderately lower SD of R2* values for the PPWM algorithm. Moreover, the PPWM provided the best accuracy, giving a lower error of R2* estimates.

Conclusion

The PPWM yielded comparable reproducibility and higher accuracy than the TPWM. The method is suitable for relaxivity maps in other organs and applications.  相似文献   

19.

Purpose

The aim of this study is to investigate whether subserosal enhancement on the delayed-phase dynamic magnetic resonance (MR) study (SED) can differentiate T2 from T1 gallbladder carcinoma (GBC).

Methods

The institutional research board approved this retrospective study. Between 1997 and 2006, there were surgically proven 11 T1 and 21 T2 GBC in 30 patients, all of whom had undergone preoperative contrast enhanced dynamic MR study, either with a 2D sequence (n=17) or 3D sequences (n=15). All images were reviewed by two radiologists for the presence of SED, and receiver operating characteristic (ROC) curve analysis was performed. Sensitivity, specificity, positive and negative predictive values were calculated by consensus.

Results

The areas under the ROC curves of the two readers were 0.91 and 0.86, and the kappa value was 0.78. Of the 21 T2 GBC, 18 and 3 showed positive and negative SED, respectively. Of the 11 T1 GBC, 1 and 10 showed positive and negative SED, respectively. The sensitivity, specificity, positive and negative predictive values of SED for diagnosing T2 lesions were 86%, 88%, 91% and 77%, respectively.

Conclusions

In conclusion, SED may be a useful sign to differentiate T2 from T1 GBC, which would affect the preoperative surgical planning of the patients.  相似文献   

20.

Purpose

To assess the sensitivity and specificity of intra-plaque hemorrhage (IPH), large lipid-rich necrotic core (LR-NC) and ulceration or cap rupture (UCR) for symptomatic carotid plaque characterization and to evaluate a new imaging score [Hemorrhage, Ulceration or cap rupture, Lipid-rich necrotic Core (HULC) score based on the sum of presence/absence of IPH, UCR and LR-NC; range 0–3] for assessment of recently symptomatic carotid plaques.

Material and methods

Twenty-seven recently symptomatic (< 8 weeks) and 36 asymptomatic patients with a carotid plaque thicker than 2 mm were prospectively imaged on a 3-T magnetic resonance (MR) system using high-resolution, multi-contrast MR sequences. Prior to analysis, all images were reviewed to assess image quality of each sequence. Sensitivity and specificity of IPH, LR-NC, UCR and HULC scores were calculated.

Results

Fifty-one patients were analyzed (26 symptomatic carotids and 67 asymptomatic carotids) after exclusion of studies with poor image quality. Sensitivity and specificity for symptomatic carotid plaque was, respectively, 46.1% and 97% for IPH, 84.6% and 73.1% for UCR and 80.7% and 76.1% for LR-NC. A HULC score of 2 or more showed a sensitivity of 73% and a specificity of 92.5%.

Conclusion

At 3 T, intra-plaque hemorrhage is the most specific criterion to characterize symptomatic carotid plaque. The HULC score offers the best compromise between sensitivity and specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号