首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In common with all gas chromatography (GC) methods, comprehensive two-dimensional gas chromatography (GC x GC) has the potential to provide both qualitative and quantitative analysis. There are fundamental differences in the way one-dimensional (1D-GC) and GC x GC results are interpreted for these parameters. Since 1D-GC produces a single measured peak in the chromatogram, there is a single retention time, and associated with this a single peak response (either area or height). Peak area and height are related by peak width. GC x GC produces a series of modulated peaks at the detector. Thus, the peak metrics of retention, area and height for one component are now not simple single values for one peak, but rather are derived from the multiple peak distribution generated by the modulation process. The peak retention is interpreted in terms of two-dimensional coordinates in a retention plane. In this study, a brief background review to quantification in GC x GC is provided. Previous reviews cover aspects of quantitative GC x GC studies up to the year 2005, including different approaches to quantification, and reports of quantitative analysis with different detectors, for different compounds classes, and in different matrices. Other studies have developed chemometric approaches based on multivariate analysis to provide quantitative reporting of individual compounds. The coverage of the earlier reviews has been updated to include material that has been presented since 2005 and includes considerations of valve-based modulation. Recently the modulation ratio (M(R)) concept was proposed and intended to clarify the meaning of modulation number (n(M)) in GC x GC, which was shown to be a rather poorly defined parameter. Based on the prior studies that introduced this concept, the role of quantitative analysis is investigated here through calculation of the peak areas and peak area ratios of selected series of modulated peaks in GC x GC. The application of isotopically labelled reference compounds for polycyclic aromatic hydrocarbon (PAH) analysis is used here to develop the quantitative metric approach. It is shown that by selecting the two or three major modulated peaks for solutes and internal standards, comparing the response ratio with the sum of all modulated peaks and also with the reference non-modulated result, quantification is statistically equivalent. Thus, adequate quantitative analysis and calibration can be accomplished by using selected major modulated peaks for each compound. This may simplify quantitative interpretation of GC x GC data.  相似文献   

2.
The headspace compositions of 13 pepper and peppercorn samples of different species, colloquially also referred to as pepper, were analyzed, and more than 300 compounds were tentatively characterized by means of comprehensive two-dimensional gas chromatography in tandem with flame ionization detection, quadrupole mass spectrometric detection and time-of-flight mass spectrometric detection (GC x GC-FID, GC x GC/qMS and GC x GC/TOFMS, respectively). The analysis of volatile organic compounds (VOCs) was performed after solid-phase microextraction (SPME) using a 75-microm PDMS/DVB fibre. Fingerprint comparison between the three techniques permitted peaks to be assigned in the GC x GC-FID experiment based on the analogous MS analysis, taking into account retention shifts arising from method variations. When using GC x GC/TOFMS, about five times more peaks were identified than in GC x GC/qMS. Retention indices for all peaks were calculated in the bi-dimensional column set comprising of a 5% phenyl polysilphenylene-siloxane primary column and a polyethylene glycol second column. The spectra obtained by both mass detection techniques (qMS and TOFMS) give very similar results when spectral library searching was performed. The majority of the identified compounds eluted as pure components as a result of high-resolution GC x GC separations, which significantly reduces co-elution, and therefore increases the likelihood that pure spectra can be obtained. The differences between TOFMS and qMS (in fast scanning mode) spectra were generally small. Whilst spectral quality and relative ion ratios across a narrow peak (e.g. w(b) approximately 100-150 ms) do vary more for the fast peaks obtained in GC x GC/qMS operation, than with TOFMS, in general adequate spectral matching with the library can be achieved.  相似文献   

3.
This paper reports the results of an analytical study comparing capillary gas chromatography (GC) operated in the normal mode with 2 new GC techniques, comprehensive GC (GC x GC) and targeted (or selective) multidimensional GC, which use a longitudinally modulated cryogenic system (LMCS), recently developed in our laboratory. A high-temperature application of derivatized sterols, of interest in fecal pollution monitoring, was chosen for this work. A directly connected coupled-column ensemble was used, comprising a nonpolar column and a moderately polar column. With LMCS, effluent from the first column is zone-compressed in a cryogenic trap and then pulsed to a short second column, producing narrower peaks with sharp, tall peak responses at the detector. The modulator is operated at a constant frequency, e.g., 0.25 s(-1), to produce the GC x GC result, or is moved in a predefined manner so that whole peaks are selectively trapped and subsequently pulsed through to the second column in the targeted mode. Standard solutions containing a mixture of 7 sterols and 5-alpha-cholestane internal standard were used. Detection sensitivity is increased by a factor of >25 with the use of LMCS. The estimated limit of detection was about 0.1 microg/mL when normal GC with flame ionization detection (GC/FID) and a 1.0 microL splitless injection volume were used, compared with 0.02 and 0.004 microg/mL for the LMCS operated in GC x GC and selective modes, respectively. Calibration curves for GC/FID were linear over the 0.1-2.0 microg/mL range tested. Reproducibilities for the GC x GC and normal GC modes were comparable; generally, relative standard deviations (RSD) were on the order of 3-4%, based on raw peak responses. Improved reproducibility was found for selective LMCS operation, at an RSD of around 2%; with internal standardization, better results were achieved. The coupled-column arrangement allowed complete separation of sterol peaks from overlapping impurity peaks in a number of instances with LMCS modes, and its use should improve data quality over that of normal GC operation, in which the overlapping peaks interfere with measurement of peak response in the normal mode.  相似文献   

4.
This study explores the application of specific thermionic ionisation detection in comprehensive 2-D GC (GC x GC) and represents the first report of GC x GC with nitrogen phosphorus detection (GC x GC-NPD). Of particular interest is the performance of the NPD with respect to peak parameters of asymmetry and sensitivity. Since GC x GC produces much narrower peaks than obtained with fast GC (e.g. 100 ms vs. <1 s) the effect of detector response time and any lack of symmetry arising from the detection step is important if peak separation (resolution) is to be maintained. It was observed that detector gas flows had a significant impact on peak asymmetry and peak magnitude, and that optimisation of the detector was critical, particularly for complex sample analysis by GC x GC-NPD. Peak asymmetries ranging from As = 1.8 to 8.0 were observed under different conditions of detector gas flows. Comparison of GC x GC-NPD with GC x GC-flame ionisation detection (FID) showed the former to be approximately 20 times more sensitive for the detection of nitrogen-containing methoxypyrazines analytes, and GC x GC-NPD had a larger linear detection range compared to GC x GC-FID. Furthermore, comparison of GC x GC-NPD and GC x GC-TOFMS chromatograms for the analysis of coffee head-space demonstrated the benefits of selective detection, ultimately realised in a comparatively simplified contour plot.  相似文献   

5.
We report a novel peak sorting method for the two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) system. The objective of peak sorting is to recognize peaks from the same metabolite occurring in different samples from thousands of peaks detected in the analytical procedure. The developed algorithm is based on the fact that the chromatographic peaks for a given analyte have similar retention times in all of the chromatograms. Raw instrument data are first processed by ChromaTOF (Leco) software to provide the peak tables. Our algorithm achieves peak sorting by utilizing the first- and second-dimension retention times in the peak tables and the mass spectra generated during the process of electron impact ionization. The algorithm searches the peak tables for the peaks generated by the same type of metabolite using several search criteria. Our software also includes options to eliminate non-target peaks from the sorting results, e.g., peaks of contaminants. The developed software package has been tested using a mixture of standard metabolites and another mixture of standard metabolites spiked into human serum. Manual validation demonstrates high accuracy of peak sorting with this algorithm.  相似文献   

6.
This study examines the effect of the column operating temperature of 100 m SP-2560 and CP-Sil 88 capillary gas chromatographic (GC) columns on the separation of cis- and trans-octadecenoic (18:1) isomers in partially hydrogenated vegetable oils. The overlapping GC peaks were measured at column isothermal temperatures of 170, 175, 180, 185, and 190 degrees C. With both columns, isothermal operation at 180 degrees C produced the fewest overlapping peaks of the cis and trans isomers. At this temperature, all trans-18:1 isomers, except 13t-18:1 (t = trans), 14t-18:1, and 15t-18:1 isomers were resolved from the cis-18:1 isomers. The peaks of the 13t-18:1 and 14t-18:1 isomer pair, which always elute together, overlapped peaks of the 6c-18:1 (c = cis), 7c-18:1, and 8c-18:1 isomers; the peak of the 15t-18:1 isomer overlapped the major cis-18:1 peak, which was mainly due to 9c-18:1. Isothermal operations above or below 180 degrees C produced some additional overlapping problems. At 185 and 190 degrees C, the peaks of the 16t-18:1 and 13c-18:1 isomers overlapped. At 175 and 170 degrees C, the 16t-18:1 peak overlapped the 14c-18:1 peak, and the peaks of the 13t + 14t-18:1 isomer pair partially overlapped the major cis-18:1 peak. The separation of 11c-20:1 and alpha-linolenic acid and its geometric isomers was also affected by the column operating temperature. Isothermal operation of the SP-2560 column at 180 degrees C produced a baseline separation of 11c-20:1 and alpha-linolenic acid and its geometric isomers, whereas with the CP-Sil 88 column the best resolution was obtained at 170 degrees C. The results of this study show that the SP-2560 capillary column has a slight advantage over the CP-Sil 88 column for the simultaneous resolution of all the fatty acids generally found in partially hydrogenated vegetable oils.  相似文献   

7.
Comprehensive two-dimensional gas chromatography (GC x GC) can reveal information on the composition of a sample in a way that cannot be done by one-dimensional GC (1D-GC). GC x GC also offers much greater control of chromatographic selectivity based on molecular structure. However, in spite of more than 15 years of claims of the ability of GC x GC to resolve an overwhelmingly larger number of peaks than 1D-GC, and in spite of the theoretically proven potential of GC x GC to have an order of magnitude larger peak capacity than 1D-GC, the peak capacity of currently practiced GC x GC does not generally exceed the peak capacity attainable from 1D-GC with the same analysis time and the same minimal detectable concentration (MDC). The methodology for comparing the peak capacity of GC x GC to 1D-GC is described. The comparison of the performance of GC x GC to 1D-GC shows that the modulator is the key bottleneck limiting the performance of existing GC x GC. To realize the full potential of GC x GC, duration of injection from a modulator into the second-dimension column should be reduced by an order of magnitude or more. Use of powerful data analysis techniques such as peak deconvolution in both dimensions can further increase resolving power of GC x GC.  相似文献   

8.
The potential and current limitations of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOF-MS) for the analysis of very complex samples were studied with the separation of cigarette smoke as an example. Because of the large number of peaks in such a GC x GC chromatogram it was not possible to perform manual data processing. Instead, the GC-TOF-MS software was used to perform peak finding, deconvolution and library search in an automated fashion; this resulted in a peak table containing some 30000 peaks. Mass spectral match factors were used to evaluate the library search results. The additional use of retention indices and information from second-dimension retention times can substantially improve the identification. The combined separation power of the GC x GC-TOF-MS system and the deconvolution algorithm provide a system with a most impressive separation power.  相似文献   

9.
10.
A method for separation and identification of peaks in essential oil samples based on rapid repetitive heart-cutting using multidimensional gas chromatography (MDGC)-mass spectrometry (MS) coupled with a cryotrapping interface is described. Lavender essential oil is analyzed by employing repetitive heart-cut intervals of 1.00 and 1.50 min, achieved in a parallel MDGC-MS/GC-FID experiment. The number of peaks that were detected in 1D GC operation above a given response threshold more than tripled when MDGC-MS employing the cryotrapping module method was used. In addition, MDGC-MS enabled detection of peaks that were not individually evident in 1D GC-MS, owing to effective deconvolution in time of previously overlapped peaks in 1D GC. Thus separation using the cryomodulation approach, without recourse to using deconvolution software, was possible. Peaks widths decreased by about 5-7-fold with the described method, peak capacity increased from about 9 per min to 60 per min, and greater sensitivity results. Repeatability of retention times for replicate analyses in the multidimensional mode was better than 0.02% RSD. The present study suggests that the described heart-cutting technique using MDGC-MS can be used for general improvement in separation and identification of volatile compounds.  相似文献   

11.
A computerized peak deconvolution software and mass spectra were successfully applied for the deconvolution of overlapped peak cluster in the chromatogram obtained separating the complex mixture of pesticides by retention time locking gas chromatography-mass spectroscopy. The method based on the unique fragment ions in the spectra can be used for deconvolution of peak clusters if mass spectra of overlapped peaks differ. This method allows determining actual retention times of overlapped peaks. Peak areas found by this method however, cannot be used naturally for the quantitative purposes as the abundance of fragment ions used for this deconvolution procedure can dramatically differ. Computer assisted deconvolution of peaks in the peak clusters gives more realistic peak area ratios as at this method it is supposed equal response for all peaks overlapped in a cluster.  相似文献   

12.
During each sampling period, an accumulating resampler (modulator) in comprehensive 2-D chromatography accumulates all eluite from the first-dimension column and reinjects the whole or a portion of the accumulated material into the second-dimension column. The detrimental effect of the resampling on peak capacity of a 2-D separation comes from the broadening of the peaks along the first-dimension due to the resampling itself and due to the subsequent peak reconstruction. Sampling density (rho(S)) of resampling is the number of sampling periods per standard deviation of a peak at the outlet of the first-dimension column. It is shown that a simple formula describes the peak broadening as a function of rho(S) at any (even practically too low or too high) rho(S), for the peaks of any (not necessarily Gaussian) shape, for a wide class of peak reconstruction techniques, and for any 2-D separation (GC x GC, LC x LC, etc.). In capillary GC x GC, optimal rho(S) (rho(S,Opt)) depends on the type of the peak reconstruction and on the degree of the gas decompression along the second-dimension column. When reconstructing using linear interpolation, rho(S,Opt) = 0.7 at large and rho(S,Opt) = 0.5 at small gas decompression. The choice of exact optimal conditions is not critical. Thus, two-fold departure of actual rho(S) from rho(S,Opt) in either direction (under- or oversampling) causes only 10% drop in the net peak capacity of GC x GC. The quantitative effect of a much greater undersampling is also evaluated.  相似文献   

13.
Two-dimensional gas chromatography (GC x GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC x GC-TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC x GC-TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC x GC-TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers (iso-butyl, sec-butyl, tert-butyl, and n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC x GC-TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC x GC-TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC x GC-TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo (Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.  相似文献   

14.
A new resolution metric for two-dimensional chromatography is proposed and tested. This resolution measurement is based on the concept of the (one-dimensional) valley-to-peak ratio, which has been adapted and modified for two-dimensional chromatography. Two questions are considered related to the computation of the resolution of a given (two-dimensional) peak. First, the concept of peak neighbourhood is revised, since it changes drastically from one- to two-dimensional chromatography. In a chromatogram resulting from a two-dimensional analysis, one peak may be surrounded by more than two neighbouring peaks. However, the neighbouring peaks can be remote from the peak or some interfering peaks may be in between. In these cases, it is not meaningful to compute the resolution between them. A method is proposed to determine whether a resolution measurement between two two-dimensional peaks is reasonable. Second, a measurement of the valley-to-peak ratio in two-dimensional chromatography is proposed. The measurement is based on the concept of the saddle point (which is defined for two-dimensional surface plots). A study of the correlation of the valley-to-peak ratio with the error obtained for quantification is presented. The new metric can be used as an estimator of the quantification errors. Also, valley-to-peak ratios can be calculated for one or more target peak(s) to estimate the separation quality of the entire chromatogram. This makes the proposed measurement suitable for optimisation purposes. Although the algorithm was developed for GC x GC, preliminary studies suggested that its application to other two-dimensional separation methods (e.g. LC x LC) should only require minor modification (if any).  相似文献   

15.
Comprehensive two-dimensional gas chromatography (GC x GC) analysis has the capability to resolve many more components of complex mixtures than traditional single column GC analysis. There is an increasing need to provide reliable identification of these separated components; time-of-flight mass spectrometry (TOFMS) is the most appropriate technology to achieve this task. Rather than require MS for all GC x GC separations, it is desirable to assign peak identities to specific peak positions in the GC x GC separation space, and this necessitates matching peak retentions in the two experiments - GC x GC-FID and GC x GC-TOFMS. The atmospheric vs. vacuum outlet conditions confound this task. It is shown here that by employing a supplementary gas supply, provided to a T-union between the column outlet and the MS interface, it is possible to generate 2D chromatograms for GC x GC-FID and GC x GC-TOFMS that are essentially exactly matched. There is no degradation in separation performance or efficiency in the second column in the system interfaced to the T-union. Since the GC x GC-FID experiment uses hydrogen for maximum efficiency, and GC x GC-TOFMS uses helium carrier, translation of (conditions/retentions) must account for the different viscosities of the carrier gases. Translation of conditions is based on well-known principles established in single column analysis. Tabulated data illustrate that retention reproducibility was of the order of better than 4 s for the average first dimension retention difference, and about 40 ms for the average second dimension retention difference when comparing GC x GC-FID and GC x GC-TOFMS results. This should provide considerable support for identification in routine GC x GC-FID analysis of specific sample types, once the peaks in 2D separation space have been assigned identities through GC x GC-TOFMS analysis.  相似文献   

16.
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method.  相似文献   

17.
Comprehensive two-dimensional gas chromatography (GC x GC) provides a true orthogonal separation system. It is explained and demonstrated that it generates a peak capacity that is approximately equal to the product of the peak capacities of the two individual separation systems. The resulting peaks are ordered in a two-dimensional plane in bands of compounds with the same characteristics. Quantitation of the separated (groups of) components is fundamentally not different from one-dimensional gas chromatography, but the sensitivity is far better and true baseline is always available. The two co-ordinates of each peak in the plane make the identification more reliable. Instrumental considerations of GC x GC are discussed. The three designs of contemporary GC x GC systems are presented and compared. Although the technique is still very young, a number of applications on complex samples as petroleum and environmental samples have already been reported. Finally, the future perspectives of GC x GC are discussed.  相似文献   

18.
A new procedure for resolving noisy overlapped peaks in DNA separations by capillary electrophoresis (CE) is developed. The procedure combines both a wavelet-based denoising method that effectively denoises the signal and a novel approximate deconvolution technique that resolves the fragment peaks and improves the ability to separate highly overlapped peaks early in the electrophoresis process. Different kinds of overlapped peaks with and without noise simulated by computer as well as some DNA experimental electropherograms were submitted to the new procedure. A second order differential operator with variable coefficients is applied to the entire electrophoresis signal at any given time and approximate deconvolutions of the individual Gaussian peaks are performed. The operator incorporates the effect of the superposition and gives exact annihilation in the neighborhood of each peak. Overlapped peaks with a resolution higher than 0.46 can be resolved directly. Also, the method can determine the peak components of signals with a signal to noise ratio higher than 1.4  相似文献   

19.
Tong  Xia  Zhang  Zhimin  Zeng  Fanjuan  Fu  Chunyan  Ma  Pan  Peng  Ying  Lu  Hongmei  Liang  Yizeng 《Chromatographia》2016,79(19):1247-1255

A novel algorithm, entitled recursive wavelet peak detection (RWPD), is proposed to detect both normal and overlapped peaks in analytical signals. Recursive peak detection is based on continuous wavelet transforms (CWTs), which can be used to obtain initial peak positions even for overlapped peaks. Genetic algorithm (GA) and Gaussian fitting are used to refine peak parameters (peak positions, widths, and heights). Finally, area of peaks can be calculated by numeric integration. Simulated and ultrahigh performance liquid chromatographic ion trap time-of-flight mass spectrometry (UPLC-IT-TOF-MS) data sets have been analyzed by RWPD, MassSpecWavelet, and peakfit package by Tom O’Haver. Results show that RWPD can obtain more accurate positions and smaller relative fitting errors than MassSpecWavelet and peakfit, especially in overlapped peaks. RWPD is a convenient tool for peak detection and deconvolution of overlapped peaks, and it has been developed in R programming language and is available at https://github.com/zmzhang/RWPD.

  相似文献   

20.
A new method called spline convolution (SC) for resolving overlapped peaks was proposed in this paper. The differential pulse voltammetric overlapped peaks of mixtures of Pb(Ⅱ) and T1(I) were investigated by this method, and satisfactory results were obtained. The results show excellent correlation between peak areas of the processed signals and the concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号