首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thiocarbonyl-bridged complex Cp2Fe2(CO)3CS is obtained by the reaction of CpFe(CO)2? and (PhO)2CS in THF. Infrared and NMR spectra show that the compound exists in solution in interconverting cis and trans forms, but that the isomerization occurs more slowly than for the carbonyl analog [CpFe(CO)2]2. Most reagents which cleave [CpFe(CO)2]2, such as Br2, HgCl2, and O2/HBF4, do not give simple cleavage reactions with Cp2Fe2(CO)3CS. Reductive cleavage of Cp2Fe2(CO)3CS with Na(Hg) gives the thiocarbonyl anion CpFe(CO)(CS)?, which reacts with Ph3SnCl to form CpFe(CO)(CS)SnPh3. Methylamine reacts with CpFe(CO)(CS)SnPh3 to give CpFe(CO)(CNMe)SnPh3, while ethylenediamine gives the carbene complexes CpFe(CO)C(N2C2H6)SnPh3. The preparation of another new carbene complex, [CpFe(CO)2C(OMe)2]PF6, is also described.  相似文献   

2.
A controlled substitution reaction of the chlorine atoms of 1,3,5-benzenetricarbonyl trichloride by the organoiron fragment (CpFe(CO)2S) has been achieved. The complexes CpFe(CO)2SCO-3,5-C6H3(COCl)2 (1), 1,3-[CpFe(CO)2SCO]2-5-C6H3COCl (2) and 1,3,5-[CpFe(CO)2SCO]3C6H3 (3) were prepared from the reaction of (μ-S x )[CpFe(CO)2]2 (x = 3, 4) with 1,3,5-C6H3(COCl)3 in a 1:1, 2:1, or 3:1 metal to ligand molar ratio. The reactions of (1) with amines, thiols, and carboxylic acids produce the trifunctional mono-iron complexes CpFe(CO)2SCO-3,5-C6H3(COY)2 [Y = NR2 (4), SR (5), OCOR (4)]. The X-ray structure determination of (1) is reported.  相似文献   

3.
Photolytic substitutions of iron selenocarboxylate complexes CpFe(CO)2SeCOR with triphenylphosphine, triphenylarsine or triphenylantimony (EPh3) gave exclusively the monosubstituted complexes CpFe(CO)(EPh3)SeCOR [R = 3,5-C6H3(NO2)2 (1), 4-C6H4NO2 (2), Ph (3), 2-C6H4Me (4), and E = P (a), As (b), Sb (c)] in high yields.  相似文献   

4.
[Cp((CO)2Fe(PPh2H)]PF6 reacts with NaBH4 to give the intermediates CpFe(CO)2H and PPh2H, which are then converted into Cp(CO)(H)Fe(PPh2H). [Cp(CO)2FeL]PF6 (L = P(OMe)3, P(OEt)3 and P(OiPr)3) reacts with NaBH4 to give the product Cp(CO)(H)FeL directly without Cp(CO)2FeH and L even being formed transiently. The proposed reaction mechanism is that H attacks th phosphorus atom to give a metallaphosphorane complex, followed by coupling between a Cp(CO)2Fe fragment and H on the hypervalent phosphorus.  相似文献   

5.
A new series of bifunctional organoiron thio‐ and seleno‐terephthalate complexes — (η‐C5H5)Fe(CO)2ECO(C6H4)COX [E = S; X = C6H11NH, (C2H5)2N; and E = Se; X = P? CH3? C6H4? NH, C6H5? C2N2O? S, m? NO2? C6H4? CH?CH? COO] — has been synthesized via the organic transformation reactions of the terephthaloyl chloride precursors η‐(C5H5)Fe(CO)2ECO(C6H4)COCl with the desired nucleophiles. These new complexes were characterized by elemental analysis, IR and 1H NMR spectra. The above complexes, in addition to some other selected analogues, were tested for their antifungal, antibacterial and mutagenic activity. Our results show that all the selenium‐containing compounds have antifungal activity on Candida albicans and antibacterial effects against Bacillus subtilis and Staphylococcus aureus. Four of the six selenium‐containing derivatives exhibited growth inhibitory effects against Pseudomonas aeruginosa and/or Escherichia coli. Sulfur‐containing derivatives elicited activity against C. albicans, and each one of them showed activity against at least one of the bacterial strains that have been used in this investigation. Two selenium‐ and two sulfur‐containing derivatives showed mutagenic activity against one or more than one strain of the Salmonella typhimurium using the Ames test. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Preparation and Reactivity of Platinumcyclobutadiene Complexes [PtCl2(C4R4)L] H[PtCl3(C4H8)], prepared by reduction of H2[PtCl6] with n-butanol reacts with 2-pentyne to give equal amounts of the regioisomers [PtCl2(C4Et2Me2)] ( 3 a, 3 b ). An equimolar mixture of 2-butyne/3-hexyne reacts under the same conditions to give [PtCl2(C4Me4)] ( 1 ), [PtCl2(C4Et4)] ( 2 ) and [PtCl2(C4Et2Me2)] ( 3 a ) in a molar ratio 1:1.3:6.6. 1 and 2 react with ligands L (L = py a , p-tol b , PPh3 c , AsPh3 d , SbPh3 e ) to give complexes of the type [PtCl2(C4R4)L]. The complexes were characterized by microanalysis as well as by i.r., 1H- and 13C-n.m.r. spectroscopy.  相似文献   

7.
The complexes, CpRu(CO)2(BF4) and [CpFe(CO)2(eta2-2-methylpropene)][BF4], react with dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-Me2DBT) to give [CpRu(CO)2(DBT)][BF4] and [CpFe(CO)2(4,6-Me2DBT)][BF4], whose structures were established by X-ray diffraction studies. The same types of products are obtained when dibenzothiophenes react with CpRu(CO)2(BF4) and [CpFe(CO)2(THF)][BF4] that are adsorbed on the mesoporous silica SBA-15. DRIFT and XPS studies indicate that CpRu(CO)2(BF4) and [CpRu(CO)2(DBT)][BF4] are adsorbed on the SBA-15 by hydrogen-bonding of the BF4- anions to surface Si-O-H groups. CpRu(CO)2(BF4)/SBA-15 removes 99% of the DBT in a 45% toluene/55% hexanes simulated petroleum feedstock. This solid phase extractant is less successful for sterically-hindered 4,6-Me2DBT, as only 72% of it is removed. The results show that CpRu(CO)2(BF4) can be immobilized by adsorption on mesoporous silica and that it reacts with dibenzothiophenes in the adsorbed form, CpRu(CO)2(BF4)/SBA-15, in much the same way that it reacts in solution.  相似文献   

8.
The MoMo bond in [C5H5Mo(CO)3]2 is cleaved by ferricenium cations in the presence of additional Group V ligands under photochemical radiation (λmax > 300 nm). The mononuclear cationic complexes [C5H5Mo(CO)2L2]BF4 (L = E(C6H5)3, E = P, As, Sb, Bi; L2 = [(C6H5)2PCH2]2) are obtained in high yield.  相似文献   

9.
The reactivity of a series of iridium? pyridylidene complexes with the formula [TpMe2Ir(C6H5)2(C(CH)3C(R)N H] ( 1 a – 1 c ) towards a variety of substrates, from small molecules, such as H2, O2, carbon oxides, and formaldehyde, to alkenes and alkynes, is described. Most of the observed reactivity is best explained by invoking 16 e? unsaturated [TpMe2Ir(phenyl)(pyridyl)] intermediates, which behave as internal frustrated Lewis pairs (FLPs). H2 is heterolytically split to give hydride? pyridylidene complexes, whilst CO, CO2, and H2C?O provide carbonyl, carbonate, and alkoxide species, respectively. Ethylene and propene form five‐membered metallacycles with an IrCH2CH(R)N (R=H, Me) motif, whereas, in contrast, acetylene affords four‐membered iridacycles with the IrC(?CH2)N moiety. C6H5(C?O)H and C6H5C?CH react with formation of Ir? C6H5 and Ir? C?CPh bonds and the concomitant elimination of a molecule of pyridine and benzene, respectively. Finally the reactivity of compounds 1 a – 1 c against O2 is described. Density functional theory calculations that provide theoretical support for these experimental observations are also reported.  相似文献   

10.
Bisphosphoranylacetylenes and the Cobalt Complex Co2(CO)6{[(C2H5)2N]2PF2C?CPF2[N(C2H5)2]2} Synthesis and properties of bis[difluorobis(diethylamino)phosphoranyl]acetylene, 2 , bis(difluorodimorpholinophosphoranyl)acetylene, 4 , and bis(trifluorodiethylaminophosphoranyl)-acetylene, 6 , are described. With Co2(CO)8 2 forms the coordination compound hexacarbonyl-μ-η-bis-[difluorobis(diethylamino)phosphoranyl]acetylene-dicobalt(Co? Co), 7 . The results of the X-ray structural analysis of 2 and 7 are reported.  相似文献   

11.
Synthesis and Structure of the Phosphorus-bridged Transition Metal Complexes [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6], and [Ir4(C8H12)4Cl2(PPh)4] (PtBu)3 and (PiPr)3 react with [Fe2(CO)9] to form the dinuclear complexes [Fe2(CO)6(PR)6] (R = tBu: 1 ; iPr: 2 ). 2 is also formed besides [Fe2(CO)4(PiPr)6] ( 3 ) in the reaction of [Fe(CO)5] with (PiPr)3. When PiPr(PtBu)2 and PiPrCl2 are allowed to react with [Fe2(CO)9] it is possible to isolate [Fe2(CO)3Cl2(PtBu)5] ( 4 ). The reactions of (PiPr)3 with [Co2(CO)8] and [Ni(CO)4] lead to the tetra- and pentanuclear clusters [Co4(CO)10(PiPr)3] ( 5 ), [Ni4(CO)10(PiPr)6] [2] and [Ni5(CO)10(PiPr)6] ( 6 ). Finally the reaction of [Ir(C8H12)Cl]2 with K2(PPh)4 leads to the complex [Ir4(C8H12)4Cl2(PPh)4] ( 7 ). The structures of 1–7 were obtained by X-ray single crystal structure analysis (1: space group P21/c (Nr. 14), Z = 8, a = 1 758.8(16) pm, b = 3 625.6(18) pm, c = 1 202.7(7) pm, β = 90.07(3)°; 2 : space group P1 (Nr. 2), Z = 1, a = 880.0(2) pm, b = 932.3(3) pm, c = 1 073.7(2) pm, α = 79.07(2)°, β = 86.93(2)°, γ = 72.23(2)°; 3 : space group Pbca (Nr. 61), Z = 8, a = 952.6(8) pm, b = 1 787.6(12) pm, c = 3 697.2(30) pm; 4 : space group P21/n (Nr. 14), Z = 4, a = 968.0(4) pm, b = 3 362.5(15) pm, c = 1 051.6(3) pm, β = 109.71(2)°; 5 : space group P21/n (Nr. 14), Z = 4, a = 1 040.7(5) pm, b = 1 686.0(5) pm, c = 1 567.7(9) pm, β = 93.88(4)°; 6 : space group Pbca (Nr. 61), Z = 8, a = 1 904.1(8) pm, b = 1 959.9(8) pm, c = 2 309.7(9) pm. 7 : space group P1 (Nr. 2), Z = 2, a = 1 374.4(7) pm, b = 1 476.0(8) pm, c = 1 653.2(9) pm, α = 83.87(4)°, β = 88.76(4)°, γ = 88.28(4)°).  相似文献   

12.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

13.
The compounds tricarbonyl(η5‐1‐iodocyclopentadienyl)manganese(I), [Mn(C5H4I)(CO)3], (I), and tricarbonyl(η5‐1‐iodocyclopentadienyl)rhenium(I), [Re(C5H4I)(CO)3], (III), are isostructural and isomorphous. The compounds [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylmanganese(I)] or bis(cymantrenyl)acetylene, [Mn2(C12H8)(CO)6], (II), and [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylrhenium(I)], [Re2(C12H8)(CO)6], (IV), are isostructural and isomorphous, and their molecules display inversion symmetry about the mid‐point of the ligand C[triple‐bond]C bond, with the (CO)3M(C5H4) (M = Mn and Re) moieties adopting a transoid conformation. The molecules in all four compounds form zigzag chains due to the formation of strong attractive I...O [in (I) and (III)] or π(CO)–π(CO) [in (I) and (IV)] interactions along the crystallographic b axis. The zigzag chains are bound to each other by weak intermolecular C—H...O hydrogen bonds for (I) and (III), while for (II) and (IV) the chains are bound to each other by a combination of weak C—H...O hydrogen bonds and π(Csp2)–π(Csp2) stacking interactions between pairs of molecules. The π(CO)–π(CO) contacts in (II) and (IV) between carbonyl groups of neighboring molecules, forming pairwise interactions in a sheared antiparallel dimer motif, are encountered in only 35% of all carbonyl interactions for transition metal–carbonyl compounds.  相似文献   

14.
Preparation of R4?nPb[Mn(CO)4P(C6H5)3]n Compounds (R?CH3, C6H5; n = 1, 2) As the first examples of organolead manganese carbonyls substituted in the manganese carbonyl ligand compounds of the type R4?nPb[Mn(CO)4P(C6H5)3]n (R?CH3, C6H5; n = 1, 2) have been prepared by the alkali salt method from R4?nPbCln and NaMn(CO)4P(C6H5)3. (C6H5)2Sn[Mn(CO)4P(C6H5)3]2 has been gained by the same method and also by thermal ligand exchange. According the IR data the ligand P(C6H5)3 is trans to the tetrahedrally surrounded lead. In solution to compounds are monomeric.  相似文献   

15.
A series of thiocarboxylato and selenocarboxylato monomeric CpFe(CO)2ECORCOCl and dimeric [CpFe(CO)2ECO]2R iron complexes have been synthesized and characterized. The interaction of (μ-Ex)[CpFe(CO)2]2 (E = S; x = 2–4. E = Se; x = 1) with di-acid chlorides (ClCORCOCl) in a 1:1 molar ratio gave the monomeric complexes CpFe(CO)2ECORCOCl for R = 1,3-C6H4, 2,6-C5H3N, 1,2-C6H4. However, the dimeric complexes [CpFe(CO)2ECO]2R were obtained from the same reactants in a 2:1 metal-to-ligand molar ratio in which R is 1,3-C6H4, 2,6-C5H3N or C2H4. The monomer versus dimer production mainly depends on the electronic and steric factors of the R-moiety. The new monomeric and dimeric thio- and selenocarboxylato iron complexes have been characterized by spectroscopic techniques (1H- and 13C-NMR, IR) and by elemental analysis. The structures of [CpFe(CO)2SCO]2(1,3-C6H4) and its seleno analogue [CpFe(CO)2SeCO]2(1,3-C6H4) were determined by X-ray structure determination.  相似文献   

16.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

17.
Barium Stannate Powders from Hydrothermal Synthesis and by Thermolysis of Barium‐Tin(IV)‐Glycolates. Synthesis and Structure of [Ba(C2H6O2)4][Sn(C2H4O2)3] and [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH The hydrothermal reaction as well as the microwave assisted hydrothermal reaction of SnO2·aq with barium hydroxide gives Ba[Sn(OH)6] ( 1 ) as powder with bar like particles. Compound 1 of the same morphology can also be isolated from a hydrothermal reaction of [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ). The reaction of SnO2·aq with Ba(OH)2·8H2O in ethylene glycol yields the glycolate [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ), which forms in methanol the solvate [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH ( 4 ). Compounds 1 , 3 and 4 react at different temperatures to BaSnO3 ( 2 ) consisting of powders with different morphologies; because of the grain size of the resulting powders compounds 3 and 4 are suitable as precursor for the fabrication of corresponding ceramics.  相似文献   

18.
The reaction of the 'benzyne' cluster Os3H2(CO)9(C6H4) with diphenylacetylene affords the new compound Os3(CO)7(C6H4)[PhCC(H)Ph]2; a single crystal X-ray analysis of this product shows that two PhCC(H)Ph units and the benzyne moiety are bonded to the Os3 core as separate ligands, and that under these conditions there is no ligand condensation.  相似文献   

19.
Metal Complexes of Phenylenebistriazenides: Synthesis and Crystal Structures of [Cp(CO)2M]2(1,2-PhN3C6H4N3Ph) (M = Mo, W) [Cp(CO)2M]2(1,2-PhN3C6H4N3Ph) [(M = Mo( 1 ), M = W( 2 )] is formed in the reaction of Cp(CO)3MCl with PhN3(H)C6H4N3(H)Ph and C2H5ONa in a THF/ethanol mixture. 1 crystallizes from toluene as dark red crystals (triclinic, P1 , a = 1 499.3(9) pm, b = 1 734.0(7) pm, c = 1 852.8(8) pm, α = 66.84(3)°, β = 78.25(4)°, γ = 77.19(4)°). The unit cell contains four complexes with two independent complexes in the asymmetric unit, and eight solvent molecules. 2 crystallizes from THF as yellow crystals free from solvent molecules (triclinic, P1 , a = 979.0(5) pm, b = 1 152.8(5) pm, c = 1 475.8(5) pm, α = 98.26(4)°, β = 104.93(4)°, γ = 101.03(4)°, Z = 2). 1 and 2 are discrete molecular complexes with a 1,2-bis(phenyltriazenido)phenylligand, (PhN3C6H4N3Ph)2?, chelating the metal atoms of two Cp(CO)2M units with the N atoms N1 and N3 of both N3 groups. Due to the sterical pretension of the Cp(CO)2M units the phenylenebistriazenido ligand deviates strongly from planarity that is found in the metal complexes characterized so far.  相似文献   

20.
The present study illustrates the stability of [CpFe(CO)2(NCS)] and [CpFe(CO)2(SCN)] linkage isomers by the use of MPW1PW91 quantum method in the gas and solution phases. Our results reveal that the [CpFe(CO)2(NCS)] isomer is more stable than the [CpFe(CO)2(SCN)] isomer. Based on the polarizable continuum model, the effect of the solvent polarity on the stability, structural parameters, frontier orbital energies, and vibrational modes of carbonyl ligands (νCO) of these linkage complexes is explored. The molecular orbital analysis suggests that the major contributions to HOMO and LUMO arise from the ambidentate ligand and Fe in two isomers, respectively. In addition, the bonding interaction between the CpFe(CO)2 fragment and the ambidentate ligand is studied by means of the energy decomposition analysis. The back-bonding effect in Fe–CO bonds is revealed in the calculation of the quadrupole polarization of the carbon atom by the QTAIM analysis. The character of Fe–N and Fe–S bonds in these complexes is analyzed by the natural bond orbital analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号