首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim D  Goldberg IB  Judy JW 《The Analyst》2007,132(4):350-357
An electrochemical system that consists of a silver electrode in 0.01 M sodium hydroxide electrolyte was investigated in an effort to develop a sensitive in situ analytical method for nitrate. Cyclic voltammetry demonstrated that the proposed system has a high normalized sensitivity (2.47 A s(1/2) V(-1/2) M(-1) cm(-2)), compared to more complex electroanalytical schemes. Double-potential-step chronocoulometry was used to maximize the signal-to-noise ratio (SNR), and minimize interference from dissolved oxygen in the electrolyte. The integration period for double-potential-step chronocoulometry was determined by optimizing the extended Cottrell equation. The integrated current is proportional to nitrate up to 10 mM and the average detection limit is approximately 1.7 microM. Dissolved oxygen does not degrade performance. To examine the potential interference of other ions when analyzing nitrate, we measured the electrode response to 1000 microM each of NO(2-), Cl(-), PO(4)(3-), SO(4)(2-), F(-), CO(3)(2-), BO(2-), K(+), Ca(2+), and Sr(2+) with and without 1000 microM nitrate. Interference is negligible for most of the ions when nitrate is absent (i.e. <1% of the response to equimolar nitrate). However, interference is substantial (>20% increase or decrease in the electrode response to nitrate) for PO(4)(3-), Ca(2+), and Sr(2+) when equimolar nitrate is present.  相似文献   

2.
Bahga SS  Santiago JG 《Electrophoresis》2012,33(6):1048-1059
We present a novel method of creating concentration cascade of leading electrolyte (LE) in isotachophoresis (ITP) by using bidirectional ITP. ITP establishes ion-concentration shock waves between high-mobility LE and low-mobility trailing electrolyte (TE) ions. In bidirectional ITP, we set up simultaneous shock waves between anions and cations such that these waves approach each other and interact. The shock interaction causes a sudden decrease in LE concentration ahead of the focused anions and a corresponding decrease in analyte zone concentrations. This readjustment of analyte zone concentrations is accompanied by a corresponding increase in their zone lengths, in accordance to conservation laws. The method generates in situ gradient in the LE concentration, and therefore can be achieved in a single, straight channel simply by establishing the initial electrolyte chemistry. We have developed an analytical model useful in designing the process for maximum sensitivity and estimating increase in sample zone length due to shock interaction. We also illustrate the technique and evaluate its effectiveness in increasing detection sensitivity using transient simulations of species transport equations. We validated the theoretical predictions using experimental visualizations of bidirectional ITP zones for various electrolyte chemistries. Lastly, we use our technique to demonstrate a factor of 20 increase in the sensitivity of ITP-based detection of 2,4,6-trichlorophenol.  相似文献   

3.
A capillary electrophoresis method with UV-absorbance detection was studied and optimized for the determination of underivatized amino acids in urine. To improve concentration sensitivity the utility of in-capillary analyte stacking via dynamic pH junction was investigated with phenylalanine (Phe) and tyrosine (Tyr) as model amino acids. Before sample injection, a plug of ammonium hydroxide solution was injected to enable analyte concentration. Samples were 1:1 (v/v) mixed with background electrolyte (1 M formic acid) prior to injection. The effect of the injected sample volume, and the injected ammonium hydroxide volume and concentration on analyte stacking and separation performance was investigated. The optimal volume of ammonium hydroxide depended on the injected sample volume. Using a dynamic pH junction good resolution (1.4) was obtained for a sample injection volume of 10% of the capillary (196 nl) with Phe and Tyr dissolved in water. Limits of detection (LODs) were 0.036 and 0.049 μM for Phe and Tyr, respectively. For urine samples, the optimized procedure comprised a 1.7-nl injection of 12.5% ammonium hydroxide, followed by a 196-nl injection of urine spiked with Phe and Tyr. Satisfactory resolution was obtained and amino acid peak widths at half height were only 1.6 s indicating efficient stacking. Calibration plots for Phe and Tyr in urine showed good linearity (R(2) > 0.96) in the concentration range 10-175 μM, and LODs for Phe and Tyr were 0.054 and 0.019 μM, respectively. RSDs for peak area and migration time for Phe and Tyr were below 7.5% and 0.75%, respectively.  相似文献   

4.
The development and application of a new ion detection method based on the electroacoustic (EA) effect is described. An EA signal, produced by applying a pulsed-type electric field to an electrolyte solution in an electroacoustic cell, is dependent on the electrical and thermal properties of the electrolyte and can be detected by using a conventional gas microphone system. The EA signals, generated in this fashion, are proportional to the square of the amplitude of the pulsed-type electric field and show an inverse dependence on the modulated frequency, as found in other acoustic detection systems. The results of this study demonstrate that the EA signals observed with the new system display a linear dependence on the concentration of the electrolyte over a 3 order-of-magnitude concentration range (ca. 10(-7)-10(-4) M). The detection limit of this system was shown to be as low as 29.9 ppb for an aqueous solution of HCl. The results also indicate that the EA signal is proportional to the equivalent conductivity of electrolytes in aqueous solution. As a consequence, the new method has the potential of being used as a universal detector for ions in solutions. An important property of this detection system is that it can be applied to in situ ion detection, and as a result, it can be employed in kinetic studies to follow the progress of ionic chemical reactions.  相似文献   

5.
The intensities of ion signals from neutral oligosaccharides (N-glycans) derivatized with 2-aminopyridine (PA) were analyzed by ion trap mass spectrometry with a sonic-spray ionization (SSI) source, in both positive- and negative-ion modes, while varying the pH and concentration of ammonium acetate buffer solution. Two characteristic results are reported and discussed. The first characteristic is the pH dependence of the ion intensities; on increasing the solution pH from 4.3 to 8.6, positive ion intensities increase and negative ion intensities decrease. The second characteristic concerns the dependence of ion intensities on electrolyte concentration; on increasing the electrolyte concentration, the SSI efficiency for the PA N-glycans first increases and then decreases. Assuming that the SSI mechanism essentially conforms to the statistical charging model and the charge residue model, a new model that focuses a great deal of attention on the counter (electrolyte) ion distribution surrounding the solvated analyte (PA N-glycan) is proposed, in particular to rationalize the characteristic pH dependence.  相似文献   

6.
The responses and charge-state distributions of poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) (Mn = 400-1000 g/mol) at constant electrolyte concentrations (NaCl, 10(-3) mol/L) in electrospray were studied as a function of the analyte concentration in the concentration range of 10(-2) to 10(-7) mol/L. Single charging occurred in the case of PEG and PPG with Mn = 400 g/mol. It was observed that the response changed nearly linearly with the concentration of the polymer in the low concentration region but above a certain concentration the response leveled off. Saturation of the response at higher concentrations of PEG and PPG of Mn = 1000 g/mol, where double and triple charging occurred, was also observed. Based on the equilibrium partitioning theory a model was developed to account for the response curves and charge-state distributions of singly, doubly and triply charged adduct ions generated from solutions of PEG and PPG. The experimental and the theoretical response curves and charge-state distributions calculated with the model are in fairly good agreement.  相似文献   

7.
An electrochemical method for the determination of the ionophores monensin and lasalocid was developed, based on the polarization of an agar gel/nitrobenzene electrolyte interface. The measured current corresponding to the facilitated ion transfer across this interface is directly proportional to the concentration of an ionophore dissolved in the organic phase. Using cyclic voltammetry in a three-electrode system the detection limit for both ionophores is about 3 × 10?5 M.  相似文献   

8.
We investigated the pre-electrospray ionisation (pre-ESI) factors; analyte concentration (1-2500 ng/mL), concentration of formic acid (FA) in the mobile phase (0.01, 0.1 and 1%), concentration of the organic modifier (acetonitrile 50-90%) and flow rate (<10 μL/min) on the number of multiple protonations and ESI response for two neuropeptides (of ~3.3 kDa molecular mass); calcitonin gene-related peptide (CGRP) and vasoactive intestinal peptide (VIP). A pH of 3.23 (0.1% FA), nano-flow rate range of 350-750 nL/min and acetonitrile concentration of 50% were optimum for both neuropeptides where the highest intensities were observed. An inverse relationship between decreasing flow rate and ESI response for both peptides was also observed. The quadruply charged ([M+4H](4+)) ion was dominant for CGRP at all analyte concentrations, and also for VIP, but only at the higher analyte concentrations (250-2500 ng/mL); none of the [M+4H](4+), [M+5H](5+) or [M+6H](6+) ions were dominant at the lower concentrations. Linear correlations were obtained for the protonated states and ESI response at analyte concentrations (1-750 ng/mL). Acetonitrile concentration was critical; severe ion suppression was observed for VIP when the concentration of acetonitrile was ≥60%. Ion suppression was also observed for both peptides in an equimolar mixture, with the extent of ion suppression more severe for VIP. Our study concludes that it is important to monitor several protonated species when a single protonated state does not dominate, especially during label-free peptide quantitations.  相似文献   

9.
Rapid aqueous sample extraction (RASE) devices were constructed and characterized using m-xylene as a test analyte. Extraction of m-xylene from aqueous samples was studied under many different conditions, independently varying extractor volume, extraction gas flow rate, temperature, pressure, sample volume, and sample concentration. Gas samples were analyzed as controls to determine the non-extraction (transport) component of the analyte pulse width. The extraction of analyte from water to the gas phase took proportionately longer (compared to transport) for RASE apparatus that had a volume greater than 10 ml. An order of magnitude change in RASE volume resulted in larger than an order of magnitude change in extraction time and total analyte pulse width. The flow rate of the extraction gas had a much larger effect on a RASE apparatus with a volume greater than 10 ml. For these large extractors, both extraction time and total analyte pulse width decreased by a factor of 4 for a flow increase from 40 to 120 ml min(-1). There was little change at higher flow rates, or for extractors with smaller volumes. Temperatures below 40 degrees C resulted in large increases in the pulse duration due to broadening during transport. The temperature effect on extraction time was only a factor of 2 over a range from 25 to 85 degrees C. Pressure also had only a relatively small effect, increasing extraction time and total pulse width by a factor of 2 over a range from 12 to 34 PSI. There was no observed change in either extraction time or total pulse width when the sample volume injected varied from 10 to 1000 mul, or over a concentration range from 170 to 17 000 mug l(-1). RASE apparatus were capable of complete extraction of analyte from water in less than 5 s under optimized conditions.  相似文献   

10.
J Yuan  Y Hu  L Nie  S Yao 《Analytical sciences》2001,17(12):1389-1393
The construction and general performance characteristics of three piezoelectric quartz crystal sensors responsive to the pentoxyverine are described here. This kind of non-potentiometric sensing method is based on use of ion-pair complexes of the pentoxyverine cation with three counter anions, namely, tungstophosphate, tetraphenylborate and picrolonate. The complexes were embedded in a PVC matrix. Adsorption of the pentoxyverine ion on the complex caused a frequency decrease of the crystal. The frequency decrease was proportional to the amount of adsorbed analyte. The influencing factors were investigated in detail, and then optimized. The proposed sensors exhibit reasonable selectivity and a higher sensitivity than the potentiometric sensors. For a sensor modified with pentoxyverine-phosphotungstate, the calibration graph was linear over concentration of 1.0 x 10(-7) - 5.0 x 10(-5) M with a detection limit of 6 x 10(-8) M at pH 5.4.  相似文献   

11.
Forster RJ  Iqbal J  Hjelm J  Keyes TE 《The Analyst》2004,129(12):1186-1192
Mechanically attached, solid-state films of [Os(4,4'-diphenyl-2,2'-dipyridyl)2Cl2] have been formed on gold macro- and microelectrodes and their voltammetric properties investigated. The voltammetric response of these films associated with the Os(2+/3+) redox reaction is reminiscent of that observed for an ideal reversible, solution phase redox couple only when the contacting electrolyte contains of the order of 40% v/v of acetonitrile (ACN). The origin of this effect appears to involve preferential solvation of the redox centres by acetonitrile which facilitates the incorporation of charge compensating counterions. Scanning electron microscopy reveals that voltammetric cycling in 40:60 ACN-H2O containing 1.0 M LiClO4 as the electrolyte induces the formation of microcrystals. Voltammetry conducted under semi-infinite linear diffusion conditions has been used to determine the apparent diffusion coefficient, Dapp, for homogeneous charge transport through the deposit. The dynamics of charge transport decrease with increasing film thickness but appear to increase with increasing electrolyte concentration. These observations suggest that ion transport rather than the rate of electron self-exchange limit the overall rate of charge transport through these solids. When in contact with 40:60 ACN-H2O containing 1.0 M LiClO4 as electrolyte, Dapp values for oxidation and reduction are identical at 1.7 +/- 0.4 x 10(-12) cm2 s(-1). In the same electrolyte, the standard heterogeneous electron transfer rate constant, k(o), determined by fitting the full voltammogram using the Butler-Volmer formalism, is 8.3 +/- 0.5 x 10(-7) cm s(-1). The importance of these results for the rational design of solid state redox active materials for battery, display and sensor applications is considered.  相似文献   

12.
The present paper describes a method for the fluorometric determination of uric acid in blood serum by its reaction with uricase (UOx). The procedure is based on the changes in fluorescence that take place during the enzymatic reaction of UOx with uric acid when the solution is excited at 287 nm and the emission is measured at 330 nm. A mathematical model which relates the analytical signal to the analyte concentration was developed and the model also served to obtain some of the thermodynamic constants of the system (the Michaelis constant and the turnover number). The optimum reaction conditions and its analytical characteristics were studied, linear response range (3x10(-5)-6x10(-4) M) and reproducibility (4%, n=7). The method was applied to the determination of uric acid in three blood serum samples. The results were compared with those obtained by a commercial clinical analyzer and no systematic errors were observed.  相似文献   

13.
Thin films of the perchlorate salt of an [Os(N,N'-alkylated-2,2'-biimidazole3)2+/3+-containing polymer have been formed on planar platinum microelectrodes. The electrochemical response associated with the Os2+/3+ couple occurs at -0.19 V. In aqueous perchlorate media at near-neutral pH the voltammetric response is close to that expected for an electrochemically reversible reaction involving a surface-confined reactant. Chronoamperometry conducted on a microsecond time scale indicates that the film and solution resistances are comparable for low concentrations of supporting electrolyte. However, for LiClO4 concentrations greater than 0.4 M, RFilm contributes less than 25% of the overall cell resistance. These results suggest that when the film is dehydrated and the density of redox centers is increased, electron or hole hopping dominates the rate of homogeneous charge transport through the film. The rate of homogeneous charge transport, characterized by D(CT)1/2Ceff, where DCT is the homogeneous charge transport diffusion coefficient and Ceff is the effective concentration of osmium centers within the film, depends weakly on the concentration of LiClO4 as supporting electrolyte decreasing from (8.1 +/- 0.16) x 10(-9) to (4.7 +/- 0.4) x 10(-9) mol cm(-2) s(-1/2) as the perchlorate concentration increases from 0.1 to 1.0 M. These values are about 2 orders of magnitude lower than those of the chemically cross-linked chloride salt of the polymer. The rate of heterogeneous electron transfer is unusually rapid in this system and increases from (5.2 +/- 0.4) x 10(-3) to (7.8 +/- 0.4) x 10(-3) cm s(-1) on going from 0.1 to 0.4 M LiClO4 before becoming independent of the supporting electrolyte concentration at (9.2 +/- 0.6) x 10(-3) cm s(-1) for [LiClO4] > or = 0.6 M.  相似文献   

14.
Cottet H  Gareil P 《Electrophoresis》2001,22(4):684-691
The activation energy associated with the electrophoretic migration of an analyte under given electrolyte conditions can be accessed through the determination of the analyte electrophoretic mobility at various temperatures. In the case of the electrophoretic separation of polyelectrolytes in the presence of an entangled polymer network, activation energy can be regarded as the energy needed by the analyte to overcome the obstacles created by the separating network. Any deformation undergone by the analyte or the network is expected to induce a decrease in the activation energy. In this work, the electrophoretic mobilities of poly(styrenesulfonates) (PSSs) of various molecular weights (Mr 16 x 10(3) to 990 x 10(3)) were determined in entangled polyethylene oxide (PEO) solutions as a function of temperature (in the 17-60 degrees C range) and the PSS activation energies were calculated. The influences of the PSS molecular weight, blob sizes zetab of the separating network (related to the PEO concentration), ionic strength of the electrolyte and electric field strength (75-600 V/cm) were investigated. The results were interpreted in terms of analyte and network deformations and were confronted with those previously obtained for DNA migration in polymer solutions and chemical gels. For a radius of gyration Rgzetab, suggesting PSS and network deformations in the latter case. Increasing ionic strength resulted in an increase in the PSS activation energy, because of the decrease of their radii of gyration, which makes them less deformable. Finally, the activation energies of all the PSSs are a decreasing function of field strength and at high field strength tend to reach a constant value close to that for a small molecule.  相似文献   

15.
Schwarz MA 《Electrophoresis》2004,25(12):1916-1922
The determination of biogenic monoamines by enzyme-catalyzed oxidation after electrophoretical separation on a microfluidic chip decreases their detection limits significantly. An amperometric system with a chemically amplified response for neurotransmitters and their metabolites is presented. The principle is the rapid cyclic oxidation of the analyte on the amperometric detector in the presence of the redoxactive enzyme glucose oxidase in the capillary electrophoresis buffer. With this approach, detection limits in the range of 10(-7)-10(-8) M could be reached. Because of the good linearity between the current response and the concentration of catecholamines and their metabolites at concentrations up to 300 microM, this method is attractive for the analytical detection at low concentration levels such as in biological fluids.  相似文献   

16.
两个不可逆电对共存体系的流动注射双安培分析法   总被引:16,自引:0,他引:16  
流动注射分析已有电位法[1]、单安培法[2]和双安培法[3~8]等电化学检测方法.安培法比电位法灵敏,颇受重视.单安培法由于在控制工作电位范围内受其它可氧化还原物质的干扰,选择性不高.双安培法仪器装置较简单,但应用范围仅限于I2/I-,Fe3+/Fe2+等少数几种可逆电对体系.迄今为止,尚未见到将双安培法应用于不可逆体系的报道.本文讨论两个独立的不可逆电对共存的流动注射双安培检测法,以拓展双安培法的应用范围,并选用溶解氧分别与抗坏血酸、羟胺和联氨构成的3个体系进行了考察验证.1 实验部分1.1 仪器和试剂 流动注射双安培检测系统由IFI…  相似文献   

17.
Téllez A  Weiss VU  Kenndler E 《Electrophoresis》2008,29(18):3916-3923
Three equilibria determine the interaction of a neutral analyte with the detergent in micellar electrokinetic chromatography and therefore its migration: (i) that of the free analyte in the aqueous phase with the micelle, (ii) its association with free detergent monomers in the aqueous phase, and (iii) the partition of the associate of analyte and monomer between the aqueous solution and the micelle. For the first equilibrium, non-stoichiometric partitioning between two phases is preferred in the present work over the assumption of complex formation between one molecule of the analyte with one micelle. The second equilibrium is described by the formation of a 1:1 associate of the analyte and monomer. In this paper, thirdly an additional equilibrium is introduced, namely, the distribution of the analyte-monomer associate between the aqueous and the micelle phase; it is expressed by the according partition coefficient. The three equilibrium constants are interrelated. Mobility data for a lipophilic fluorescent compound and a series of n-alkylphenones (differing in chain length) were measured as a function of the SDS concentration below and above the critical micellar concentration. Curve fitting enabled the derivation of the equilibrium constants. It was found that the association constants of the analytes with the detergent monomers are between 2 and 75 M(-1). Interestingly, the partition coefficient of the analyte-monomer associate between the aqueous and micellar phase is by a factor of 5-200 larger than that of the free analyte.  相似文献   

18.
Semi-analytical scaling theory is used to describe quenched and annealed (weakly charged, ionizable, charge-regulating) polyelectrolyte brushes in electrolyte solutions of arbitrary salt concentration. An Alexander-De Gennes box model with homogeneous distribution of polymer segments and the free ends located at the edge of the brush is assumed, as is local electroneutrality in the brush. For annealed polyelectrolyte and in the low-salt regime, the theory predicts that for sufficiently dense brushes, the salt concentration has a small influence on brush height, while the brush expands with increasing grafting density, in agreement with experiment. Expressions are presented for the interaction free energy of compressed ionizable and quenched polyelectrolyte brushes (proportional to the force between particles or curved surfaces). In all cases, the required prefactors are explicitly stated. The theory is compared directly with published experiments on the influence of salt concentration, pH, and grafting density on the thickness and interaction force of polystyrene sulfonate (quenched) and poly(meth)acrylic acid (annealed) brushes. In general, trends are well reproduced but significant deviations remain.  相似文献   

19.
Pekol TM  Poopisut N  Cox JA 《Talanta》1994,41(5):663-668
Uphill transport of L-Dopa and phenylalanine (Phe) across cation-exchange membranes into micelle-containing receiver solutions is reported. With L-Dopa as the analyte in a sample solution at a pH where it is it a zwitterion, preconcentration by a factor of 3.2 +/- 0.2 (n = 5) is observed when 0.10M sodium dodecyl sulfate (SDS) is the receiver. When the SDS concentration is varied, preconcentration of L-Dopa is not observed until the critical micelle concentration is reached. Similar results were obtained with Phe as the analyte under conditions where it is protonated in both the sample and receiver. The transport is demonstrated to obey the assumptions required to quantify the results by the fixed-time kinetic method. That is, the amount of Phe transferred from a 200-ml sample across a 10-cm(2) membrane into a 5-ml receiver was directly proportional both to the dialysis time for up to 90-min and to the initial concentration of Phe in the sample when a 60-min dialysis time was used. The latter yielded a constant enrichment factor, 4.8 +/- 0.2 (n = 6), when the sample concentration of Phe was in the range 0.61 mM-6.0 muM. Means to increase the enrichments to practical values are discussed.  相似文献   

20.
Liljegren G  Nyholm L 《The Analyst》2003,128(3):232-236
Polypyrrole coated microarray electrodes have been used for electrochemically controlled solid-phase microextraction and preconcentration on individually addressable gold microband electrodes. In this study, a flow of analyte solution was maintained over the band electrodes by positioning a capillary in a vertical position over the electrode array during both the extraction and the detection of the desorbed compounds. This experimental set-up was used to evaluate the possibilities of using electrochemically controlled solid-phase microextraction with conducting polymers as a preconcentration step in miniaturised flow systems. The performance of the polymer, which was prepared by electrochemical polymerisation using a solution of 0.05 M pyrrole and 0.1 M LiClO4, was investigated using chloride as a model analyte employing different extraction times and analyte concentrations. It was found that significant preconcentration was possible using extraction times of only a few minutes and that a good linearity between the extraction time and detection response was present both for mM and microM chloride concentrations. Compared to a recent study (Liljegren et al., Analyst, 2002, 127, 591-597), using a more traditional solid-phase microextraction technique under electrochemical control, the preconcentration factor could be increased by a factor of about 210 by using the present flow system based approach. This increase in the preconcentration factor can be explained by the significant decrease in the desorption volume (i.e. reduced dilution of the desorbed analyte) associated with the use of the present flow system. With the present approach, the detection limit for the model analyte chloride could be decreased from 10 microM to 625 nM employing an extraction time of 180 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号