首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Originating from work in operations research the cutting plane refutation systemCP is an extension of resolution, where unsatisfiable propositional logic formulas in conjunctive normal form are recognized by showing the non-existence of boolean solutions to associated families of linear inequalities. Polynomial sizeCP proofs are given for the undirecteds-t connectivity principle. The subsystemsCP q ofCP, forq2, are shown to be polynomially equivalent toCP, thus answering problem 19 from the list of open problems of [8]. We present a normal form theorem forCP 2-proofs and thereby for arbitraryCP-proofs. As a corollary, we show that the coefficients and constant terms in arbitrary cutting plane proofs may be exponentially bounded by the number of steps in the proof, at the cost of an at most polynomial increase in the number of steps in the proof. The extensionCPLE +, introduced in [9] and there shown top-simulate Frege systems, is proved to be polynomially equivalent to Frege systems. Lastly, since linear inequalities are related to threshold gates, we introduce a new threshold logic and prove a completeness theorem.Supported in part by NSF grant DMS-9205181 and by US-Czech Science and Technology Grant 93-205Partially supported by NSF grant CCR-9102896 and by US-Czech Science and Technology Grant 93-205  相似文献   

2.
We study implicational formulas in the context of proof complexity of intuitionistic propositional logic (IPC). On the one hand, we give an efficient transformation of tautologies to implicational tautologies that preserves the lengths of intuitionistic extended Frege (EF) or substitution Frege (SF) proofs up to a polynomial. On the other hand, EF proofs in the implicational fragment of IPC polynomially simulate full intuitionistic logic for implicational tautologies. The results also apply to other fragments of other superintuitionistic logics under certain conditions.In particular, the exponential lower bounds on the length of intuitionistic EF proofs by Hrube? (2007), generalized to exponential separation between EF and SF systems in superintuitionistic logics of unbounded branching by Je?ábek (2009), can be realized by implicational tautologies.  相似文献   

3.
We present a general method for inserting proofs in Frege systems for classical logic that produces systems that can internalize their own proofs.  相似文献   

4.
We prove lower bounds of the form exp(nε d), εd > 0, on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d, for any constant d. This is the largest lower bound for the strongest proof system, for which any superpolynomial lower bounds are known.  相似文献   

5.
We investigate read-once branching programs for the following search problem: given a Boolean m × n matrix with m > n, nd either an all-zero row, or two 1s in some column. Our primary motivation is that this models regular resolution proofs of the pigeonhole principle , and that for m > n 2 no lower bounds are known for the length of such proofs. We prove exponential lower bounds (for arbitrarily large m!) if we further restrict this model by requiring the branching program either to finish one row of queries before asking queries about another row (the row model) or put the dual column restriction (the column model).Then we investigate a special class of resolution proofs for that operate with positive clauses of rectangular shape; we call this fragment the rectangular calculus. We show that all known upper bounds on the size of resolution proofs of actually give rise to proofs in this calculus and, inspired by this fact, also give a remarkably simple rectangular reformulation of the Haken–Buss–Turán lower bound for the case m n 2. Finally we show that the rectangular calculus is equivalent to the column model on the one hand, and to transversal calculus on the other hand, where the latter is a natural proof system for estimating from below the transversal size of set families. In particular, our exponential lower bound for the column model translates both to the rectangular and transversal calculi.* Part of the work was done while this author was visiting Special Year on Logic and Algorithms at DIMACS, Princeton. Also supported by Russian Basic Research Foundation grant 96-01-01222. Part of this work was done while on sabbatical leave at the Institute for Advanced Study and Princeton University, Princeton. This work was supported by USA-Israel BSF grant 92-00106 and by a Wolfson research award administered by the Israeli Academy of Sciences, as well as a Sloan Foundation grant. This work was supported in part by National Science Foundation and DARPA under grant CCR-9627819, and by USA-Israel BSF grant 92-00106.  相似文献   

6.
M. Ajtai 《Combinatorica》1994,14(4):417-433
The Pigeonhole Principle forn is the statement that there is no one-to-one function between a set of sizen and a set of sizen–1. This statement can be formulated as an unlimited fan-in constant depth polynomial size Boolean formulaPHP n inn(n–1) variables. We may think that the truth-value of the variablex i,j will be true iff the function maps thei-th element of the first set to thej-th element of the second (see Cook and Rechkow [5]).PHP n can be proved in the propositional calculus. That is, a sequence of Boolean formulae can be given so that each one is either an axiom of the propositional calculus or a consequence of some of the previous ones according to an inference rule of the propositional calculus, and the last one isPHP n . Our main result is that the Pigeonhole Principle cannot be proved this way, if the size of the proof (the total number or symbols of the formulae in the sequence) is polynomial inn and each formula is constant depth (unlimited fan-in), polynomial size and contains only the variables ofPHP n .  相似文献   

7.
Random 3CNF formulas constitute an important distribution for measuring the average-case behavior of propositional proof systems. Lower bounds for random 3CNF refutations in many propositional proof systems are known. Most notable are the exponential-size resolution refutation lower bounds for random 3CNF formulas with Ω(n1.5−ε)Ω(n1.5ε) clauses (Chvátal and Szemerédi [14], Ben-Sasson and Wigderson [10]). On the other hand, the only known non-trivial upper bound on the size of random 3CNF refutations in a non-abstract propositional proof system is for resolution with Ω(n2/log?n)Ω(n2/log?n) clauses, shown by Beame et al. [6]. In this paper we show that already standard propositional proof systems, within the hierarchy of Frege proofs, admit short refutations for random 3CNF formulas, for sufficiently large clause-to-variable ratio. Specifically, we demonstrate polynomial-size propositional refutations whose lines are TC0TC0 formulas (i.e., TC0TC0-Frege proofs) for random 3CNF formulas with n   variables and Ω(n1.4)Ω(n1.4) clauses.  相似文献   

8.
Atserias, Galesi, and Pudlák have shown that the monotone sequent calculus MLK quasipolynomially simulates proofs of monotone sequents in the full sequent calculus LK (or equivalently, in Frege systems). We generalize the simulation to the fragment MCLK of LK which can prove arbitrary sequents, but restricts cut‐formulas to be monotone. We also show that MLK as a refutation system for CNFs quasipolynomially simulates LK.  相似文献   

9.
We formulate epsilon substitution method for elementary analysisEA (second order arithmetic with comprehension for arithmetical formulas with predicate parameters). Two proofs of its termination are presented. One uses embedding into ramified system of level one and cutelimination for this system. The second proof uses non-effective continuity argument.  相似文献   

10.
Summary In 1969, De Jongh proved the maximality of a fragment of intuitionistic predicate calculus forHA. Leivant strengthened the theorem in 1975, using proof-theoretical tools (normalisation of infinitary sequent calculi). By a refinement of De Jongh's original method (using Beth models instead of Kripke models and sheafs of partial combinatory algebras), a semantical proof is given of a result that is almost as good as Leivant's. Furthermore, it is shown thatHA can be extended to Higher Order Heyting Arithmetic+all true 2 0 -sentences + transfinite induction over primitive recursive well-orderings. As a corollary of the proof, maximality of intuitionistic predicate calculus is established wrt. an abstract realisability notion defined over a suitable expansion ofHA.  相似文献   

11.
Equiorthogonal frequency hypercubes are one particular generalization of orthogonal latin squares. A complete set of mutually equiorthogonal frequency hypercubes (MEFH) of order n and dimension d, using m distinct symbols, has (n − 1)d/(m − 1) hypercubes. In this article, we prove that an affine geometry of dimension dh over 𝔽m can always be used to construct a complete set of MEFH of order mh and dimension d, using m distinct symbols. We also provide necessary and sufficient conditions for a complete set of MEFH to be equivalent to an affine geometry. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 435–441, 2000  相似文献   

12.
The unquantified set theory MLSR containing the symbols ∪, ∖, ≠, ∈,R (R(x) is interpreted as a rank ofx) is considered. It is proved that there exists an algorithm which for any formulaQ of the MLSR theory decides whetherQ is true or not using the spacec|Q|3 (|Q| is the length ofQ).  相似文献   

13.
We consider random fields defined by finite-region conditional probabilities depending on a neighborhood of the region which changes with the boundary conditions. To predict the symbols within any finite region, it is necessary to inspect a random number of neighborhood symbols which might change according to the value of them. In analogy with the one-dimensional setting we call these neighborhood symbols the context associated to the region at hand. This framework is a natural extension, to d-dimensional fields, of the notion of variable length Markov chains introduced by Rissanen [24] in his classical paper. We define an algorithm to estimate the radius of the smallest ball containing the context based on a realization of the field. We prove the consistency of this estimator. Our proofs are constructive and yield explicit upper bounds for the probability of wrong estimation of the radius of the context.  相似文献   

14.
We show thatm distinct cells in an arrangement ofn planes in 3 are bounded byO(m 2/3 n+n 2) faces, which in turn yields a tight bound on the maximum number of facets boundingm cells in an arrangement ofn hyperplanes in d , for everyd3. In addition, the method is extended to obtain tight bounds on the maximum number of faces on the boundary of all nonconvex cells in an arrangement of triangles in 3. We also present a simpler proof of theO(m 2/3 n d/3+n d–1) bound on the number of incidences betweenn hyperplanes in d andm vertices of their arrangement.Work on this paper was supported by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center Grant NSF-STC88-09648, and by NSA Grant MDA 904-89-H-2030.  相似文献   

15.
LetK=K 1,...,Kn be a family ofn convex sets inR d . For 0≦i<n denote byf i the number of subfamilies ofK of sizei+1 with non-empty intersection. The vectorf(K) is called thef-vectors ofK. In 1973 Eckhoff proposed a characterization of the set off-vectors of finite families of convex sets inR d by a system of inequalities. Here we prove the necessity of Eckhoff's inequalities. The proof uses exterior algebra techniques. We introduce a notion of generalized homology groups for simplicial complexes. These groups play a crucial role in the proof, and may be of some independent interest.  相似文献   

16.
Linear systems arising from implicit time discretizations and finite difference space discretizations of second-order hyperbolic equations in two dimensions are considered. We propose and analyze the use of circulant preconditioners for the solution of linear systems via preconditioned iterative methods such as the conjugate gradient method. Our motivation is to exploit the fast inversion of circulant systems with the Fast Fourier Transform (FFT). For second-order hyperbolic equations with initial and Dirichlet boundary conditions, we prove that the condition number of the preconditioned system is ofO() orO(m), where is the quotient between the time and space steps andm is the number of interior gridpoints in each direction. The results are extended to parabolic equations. Numerical experiments also indicate that the preconditioned systems exhibit favorable clustering of eigenvalues that leads to a fast convergence rate.  相似文献   

17.
The concept of a determinative set of variables for a propositional formula was introduced by one of the authors, which made it possible to distinguish the set of hard-determinable formulas. The proof complexity of a formula of this sort has exponential lower bounds in some proof systems of classical propositional calculus (cut-free sequent system, resolution system, analytic tableaux, cutting planes, and bounded Frege systems). In this paper we prove that the property of hard-determinability is insufficient for obtaining a superpolynomial lower bound of proof lines (sizes) in Frege systems: an example of a sequence of hard-determinable formulas is given whose proof complexities are polynomially bounded in every Frege system.  相似文献   

18.
19.
In order to allow the use of axioms in a second‐order system of extracting programs from proofs, we define constant terms, a form of Curry‐Howard terms, whose types are intended to correspond to those axioms. We also define new reduction rules for these new terms so that all consequences of the axioms can be represented. We finally show that the extended Curry‐Howard terms are strongly normalizable.  相似文献   

20.
We present the first efficient oblivious sampler that uses an optimal number of random bits, up to an arbitrary constant factor bigger than 1. Specifically, for any α>0, it uses (1+α)(m+log γ−1) random bits to output d=poly(ϵ−1, log γ−1, m) sample points z1,…,zd∈{0, 1}m such that for any function f: {0, 1}m→[0, 1], Pr [|(1/d)∑i=1df(zi)− E f|≤ϵ]≥1−γ. Our proof is based on an improved extractor construction. An extractor is a procedure which takes as input the output of a defective random source and a small number of truly random bits, and outputs a nearly random string. We present the first optimal extractor, up to constant factors, for defective random sources with constant entropy rate. We give applications to constructive leader election and reducing randomness in interactive proofs. © 1997 John Wiley & Sons, Inc. Random Struct. Alg., 11 , 345–367 (1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号